
PEMer Documentation

PEMer Workflow Documentation

Introduction

Prerequisites

I. Software
II. Database and files

Configuration
1. ‘linker_file’
2. ‘min_length_of_mapped_reads’
3. ‘min_linker_mapped_seq_id’
4. ‘min_linker_mapped_span’
5. ‘max_duplicates_per_score’
6. ‘max_scores_retained_per_seq’
7. ‘expectedGapSpanMultiplier’
8. ‘min_concordant’ and ‘max_concordant’ (Ci and Cd)
9. ‘highQualityThreshold’

10. ‘highQualityScoreDelta’
11. ‘max_event_size’
12. ‘min_placement_score’
13. ‘min_sequence_id_on_read’
14. ‘trans’
15. ‘megablastExecutable’
16. ‘megablastDatabase’
17. ‘megablastOptions’.
18. ‘chrIdToFileMap’
19. ‘waterExecutable’
20. ‘waterLinkerMapDatafile’
21. ‘waterLinkerMapOptions’
22. ‘waterMBRefineDatafile’
23. ‘waterLinkerMapOptions’
24. ‘package_size’
25. ‘runBatch’
26. ‘tmp_dir’

Executing the workflow

Step One – Set-up
Step Two – Bundle Analysis
Step Three – Outlier Clustering
Step Four – Cluster Merging
Step Five – Converting to single line format
Other options
Adapting Solexa/SOLID data
Extra codes

1 of 18

PEMer Documentation

Input and output files
1. Set-up
2. Bundle Analysis
3. Outlier Clustering
4. Cluster Merging
5. Converting to single line format
6. Discarded files and other
7. Adapting Solexa/SOLID data

Reference

2 of 18

PEMer Documentation

Introduction

PEMer is a computational workflow developed for identifying structural
variants (SVs) from paired-end (PE) data at a high resolution (at the level of start-
and endpoints) [1]. PEMer has been shown to be highly sensitive and specific [1].
PE data, the input for PEMer, contain high-throughput sequence information for
ends of genomic DNA fragments with a known size distribution [1]. PEMer
workflow is composed of a set of modules (See ‘Executing the workflow’) which
can accommodate various data sources (e.g. data with or without linker
sequence) to be processed starting from different steps.

PEMer is composed of the following steps:

Set-up Step
Bundle Analysis Step

Linder removal
Megablast
Smith-Waterman Local Alignment
Placement
Outlier identification

Outlier Clustering Step
Cluster Merging Step

In the paper [1], the ‘Megablast’ and ‘Smith-Waterman Local Alignment’ are
merged and referred to as ‘Read-alignment’.

Prerequisites

 I. Software

1. Unix system with Python 2.5.1 or higher installed
2. Perl 5.8 or higher installed
3. Megablast

Free megablast software is included in the blast package which can be
obtained from ftp://ftp.ncbi.nih.gov/blast/executables/LATEST/ [2]

4. Smith-Waterman best local alignment
Free Smith-Waterman software is included in the EMBOSS package

which can be obtained from http://emboss.sourceforge.net/ [3]
After compiling, the Smith-Waterman executable can be found in the

‘./emboss’ directory named ‘water’.
5. Blat

If the user chooses to use blat instead of megablast for the read
alignment (See ‘Extra Codes’ section), or the Blat-checking options in ‘Step
Three – Outlier Clustering’, please install Blat from
http://www.cse.ucsc.edu/~kent/

3 of 18

ftp://ftp.ncbi.nih.gov/blast/executables/release/
http://emboss.sourceforge.net/
http://www.cse.ucsc.edu/%7Ekent/

PEMer Documentation

6. PEMer Workflow
The PEMer Workflow software can be obtained from the PEMer package

at http://sv.gersteinlab.org/pemer.

 II. Database and files

1. Megablast database
 Database of target genome in NCBI’s formatdb format.
2. Chromosome files

FASTA format files containing the individual chromosomes of the target
genome.

3. Linker sequence file
 FASTA format file that contains the sequence of the linker.

No need to specify this file if executing from the second step or later.
(See ‘Executing the workflow’)

Configuration

The ‘configPepDefault.py’ contains the parameters and directories that
need to be configured before executing the workflow and their default values.

1. ‘linker_file’: A string which specifies the path of the file that contains the
linker sequence.

2. ‘min_length_of_mapped_reads’: A read is broken up into a pair of ends
by the removal of the linker sequence. This parameter is a positive integer
which specifies the minimum acceptable length of an end. A read that
results in an end shorter than this is discarded. Default is 15.

3. ‘min_linker_mapped_seq_id’: A real number in the range [0,100], which
specifies the minimal acceptable percentage sequence identity for a linker
match. Reads with a linker identity lower than this are discarded. Default is
90.

4. ‘min_linker_mapped_span’: A positive integer which specifies the
minimal acceptable length for a linker match. Reads with a mapped linker
length shorter than this are discarded. Default is 40. Please note: this
parameter should be set smaller than or equal to the length of the linker.

5. ‘max_duplicates_per_score’: A positive integer which specifies the
maximum number of hits of the same score for each sequence to be
retained in the megablast output. Default is 30. An increase of the
parameter is expected to result in a more bulky megablast output, possibly
produced by repeat elements, reducing the efficiency of the workflow.

6. ‘max_scores_retained_per_seq’: A positive integer which specifies the
maximum number of scores for each sequence to be retained in the
megablast output. Default is 20. An increase of the parameter is expected

4 of 18

http://sv.gersteinlab.org/PEMer/download.html

PEMer Documentation

to result in a more bulky megablast output, weakening the quality control of
the workflow.

7. ‘expectedGapSpanMultiplier’: A real number (>1) that specifies the factor
for extending the genomic region of the megablast hits prior to running
Smith-Waterman best local alignment algorithm. The length of the genomic
region fed into the Smith-Waterman program is the length of the genomic
region of the megablast hit multiplied by this factor. Default is 1.2.

8. ‘min_concordant’ and ‘max_concordant’: Positive integers that specify
the minimum and maximum genomic distance between the paired ends
(PE-span) to be considered as concordant. In other words, if the PE-span
falls out of the range defined by these two cutoffs, an outlier event is
identified. In the paper [1], these two parameters are referred to as ‘Ci’ and
‘Cd’ respectively. The best parameters depend on the coverage of the data,
the cluster size chosen and the average PE-span. For example, at a
physical coverage of 5X, cluster size of 2, in order for the false positive rate
of deletion events to be under 5%, the ‘Cd’ parameter can be set at
exp(mean + 3.4SD), where ‘mean’ is the average PE-span and ‘SD’ is the
standard deviation of PE-spans in log space[1][4] . To keep the false positive
rate at a relatively fixed level, the parameters should be more stringent (‘Ci’
smaller and ‘Cd’ bigger) with the increase of coverage and/or the decrease
of cluster size. For more details about setting the cutoffs, please refer to [1]
[4]. Please note: These parameters are used by later steps in the workflow;
it is possible to adjust these and then re-run just the later steps and so
avoid rerunning the computationally intensive earlier steps.

9. ‘highQualityScoreDelta’: A positive real number which specifies the
weight that sequence identity quality contributes to the placement score.
Default is 1. An increase of this parameter places more emphasis on the
high sequence identity in the placement score.

10. ‘highQualityThreshold’: A real number in the range [0,100], which
specifies the threshold for the sequence identity of an end match to be
considered high quality. For each end match of a PE that has a sequence
identity higher than or equal to this vaule, the placement score of the PE is
increased by

‘highQualityScoreDelta’/(7+2*‘highQualityScoreDelta’). Default is 97.
11. ‘max_event_size’: A positive integer. Events exceeding this size limit are

discarded. Default is 10,000,000.
12. ‘min_placement_score’: A positive real number in the range [0,1] that

specifies the minimal acceptable placement score for an SV event. PEs
with a placement score lower than this are discarded. Default is 0.5.

13. ‘min_sequence_id_on_read’: A real number in the range [0,100], which
specifies the minimal acceptable percentage sequence identity for an end
match to qualify for an SV call. SV candidates with an end sequence
identity lower than this are discarded. Default is 90.

14. ‘trans’: Value is True/False. If ‘True’, translocation events are included in
the output for outlier identification. If ‘False’, corresponding events go to the
discarded files.

5 of 18

PEMer Documentation

15. ‘megablastExecutable’: A string which specifies the path of the megablast
executable.

16. ‘megablastDatabase’: A string which specifies the path of the megablast
database.

17. ‘megablastOptions’: A string which specifies the options for megablast
used in the workflow (Refer to megablast documentation).

18. ‘chrIdToFileMap’: A string which specifies the path of the file that maps
from a chromosome ID used in the megablast input database to the full
path of the fasta format file (i.e. ‘Chromosome files’ described in ‘Database
and files’) that contains the sequence for the chromosome. Each line of the
map file has the format:

MegablastDatabaseChromosomeId<<>>/full/path/to/chromosome/file

 An example of this mapping file can be found in the package:
PEMer_Package/PEMer_workflow/Sample_data_PEMer_workflow/MapFile.
The User should specify their only mapping file.

19. ‘waterExecutable’: A string which specifies the path of the Smith-
Waterman executable.

20. ‘waterLinkerMapDatafile’: A string which specifies the path of the scoring
matrix file used by Smith-Waterman algorithm for the linker mapping step of
the workflow. In the default file ‘DNA_PAIRED_END’, DNA letters other
than the non-ambiguous letters A, T, C, and G are considered as
mismatches by Smith-Waterman program. The user may change the
scoring matrix simply by replacing the existing file with a new scoring matrix.

21. ‘waterLinkerMapOptions’: A string which specifies the options for the
Smith-Waterman program when used for the linker mapping step of the
workflow (Refer to application documentation for the latest EMBOSS
release at http://emboss.sourceforge.net/apps/. Look for application
‘water’.[3])

22. ‘waterMBRefineDatafile’: A string which specifies the path of the scoring
matrix file used by Smith-Waterman algorithm for the refinement mapping
step following the megablast mapping of the workflow.

23. ‘waterMBRefineOptions’: A string which specifies the options for the
Smith-Waterman program when used for the refinement mapping step
following the megablast mapping in the workflow. (Refer to application
documentation for the latest EMBOSS release at
http://emboss.sourceforge.net/apps/. Look for application ‘water’.[3])

24. ‘package_size’: A positive integer which specifies the size of a bundle of
reads. The first program of the workflow, ‘PairedEndPipelineSQ.py’, breaks
down the input reads into bundles of reads with size ‘package_size’. The
best parameter depends on the total number of input reads, average time
to process each read and the time the user expects the jobs to be
completed. Default is 100.

25. ‘runBatch’: Value is True/False. If ‘True’, the workflow stops executing
after running the first program ‘PairedEndPipelineSQ.py’. The user then
needs to manually start running the bundles of reads through the rest of the

6 of 18

http://emboss.sourceforge.net/apps/
http://emboss.sourceforge.net/apps/

PEMer Documentation

steps in the workflow. The advantage of this option is that the bundles can
be processed on multiple CPUs simultaneously. For instance, they can be
processed concurrently on computer clusters managed by PBS (Portable
Batch System) and be completed in a dramatically shorter time than
running a single job. If this value is ‘False’, after running the
‘PairedEndPipelineSQ.py’ program, the workflow automatically starts
executing the rest of the steps (except the last step), processing the first
bundle of reads. After completing the second to the last program on the first
bundle, the workflow automatically goes back to the second step and starts
processing the second bundle. Therefore, the bundles are processed one
after another. (See also ‘Executing the workflow’.)

26. ‘tmp_dir’: A string which specifies the path of the folder to contain all the
output files of the workflow.

Executing the workflow

After meeting all the prerequisites (See ‘Prerequisites’) and setting up
correct parameters in the configuration file (See ‘Configuration’), the workflow
can be executed as follows.

Step One – Set-up
 Synopsis

PairedEndPipelineSQ.py [Option] InputFile

[Option]
-c ConfigFile

This file is a configuration file that overrides the parameters and
directories in the default configuration file. The contents in this file can be any
subsets indicated in the ‘Configuration’ part of the documentation.

Step Two – Bundle Analysis

See also ‘runBatch’ in ‘Configuration’.
If the parameter ‘runBatch’ in the configuration file is ‘False’, this step

should be skipped.
If the parameter ‘runBatch’ in the configuration file is ‘True’, the execution

of the workflow stops after breaking the reads down into bundles. The user
needs to explicitly run the rest of the bundle analysis steps. The command
lines (one per bundle) for executing these steps are in the file named ‘jobs’ in
the output directory. The jobs can then be carried out on multiple CPUs
simultaneously. An example command line:

‘cd working_directory ; touch ./tmp/stamp/0.Start ; (./Paired_End_Batch_Nodes.py -c

my_config.py ./tmp/reads.fa.0.fa 0 99) > ./tmp/log/0.log 2>&1 ; touch ./tmp/stamp/0.Stop’

7 of 18

PEMer Documentation

Step Three – Outlier Clustering
If the parameter ‘runBatch’ in the configuration file is ‘True’, the user

should merge the output of all the bundles from the outlier identification into a
single file. At the same time, the header line of each file of a bundle should be
removed except for the first one, generating a tab delimited file with one
header line.

 Synopsis

ClusterCommonStructuralVariants.pl Infile [Options]
where ‘Infile’ is the input file of this step, i.e. the merged output file from

the outlier identification step.

[Options]
 transloc: If ‘1’, translocation events are reported; If ‘0’, they are not
reported. Default is ‘0’.

also_report_HS_0: If ‘1’, the program will also cluster paired-ends for
which no single 'high-quality/stringency' sequence alignments are available.
High-quality/strigency end alignments are defined by ends mapping with a
sequence identity of at least ‘HS_sim’% (See ‘HS_sim’ below); If ‘0’, wise
versa. Default is ‘0’.

blat_comparison_perc_id_distance: Value is an integer. The value is
needed for the BLAT-check during clustering. This value indicates for the final
BLAT comparison of called paired ends the required 'uniqueness' of a BLAT
hit. For example, if the value is set to '1', it means that the 1st best hit to the
genome must have a sequence similarity percentage that is at least '1'
percentage point higher than for the 2nd best hit. All clusters for which at least
one paired-end reveals a unique BLAT hit at ‘value 1’ will be kept, the rest
removed. Default is ‘0’.

combined_linkermapped_file: This file contains all end sequences. For
example, the 454 paired-end reads without the linker sequence. The file is
needed for the BLAT-check during clustering.

min_concordant: Same as in ‘Configuration 8’.
max_concordant: Same as in ‘Configuration 8’.
mean_concordant: Mean of the PE-spans of the data.
min_in_cluster: Minimal cluster size chosen to call an SV event.
ignore_complex_events: If ‘1’, complex events such as mated and

unmated insertions will be ignored; If ‘0’, they will be kept. Default is ‘0’.
blat_organism: ‘human’, ‘mouse’, ‘arabidopsis’, etc (See Blat options).

Default is ‘human’.
include_if_more_than_one_best_placement: Usually should set to ‘0’. If

set to '1', ends with a non-unique placement will be included in the output.
They are usually at low quality. Default is ‘0’.

output_identical_and_near-identical_reads: If this value is set to '1',
redundant paired-end reads stemming from an oversampling of an exhausted
sequencing library will be printed in the output; Otherwise, they will be
collapsed to a single paired-end. Default is ‘0’.

8 of 18

PEMer Documentation

no_fuzzy_single_linkage_clustering: Should set at ‘0’. Default is ‘0’.
HS_sim: the minimum sequence identity needed for a high-stringency

match. Default value is set to '97’.
LS_sim: sequences below this value (low-stringency) will be discarded.
deletion_size_tolerance: This value is used for clustering and indicates

by what portion a predicted deletion size as indicated from a paired-end can
diverge from the estimated size.

complex_insertion_size_maximum: This value indicates the maximum
size of a mated insertion. Larger mated insertions will be discarded. Default is
100,000.

max_del_size: This value indicates the maximum size of a deletion.
Larger deletions will be discarded. Default is 1,000,000.

An example command line to run this program is as follows:

./ClusterCommonStructuralVariants.pl outliers.txt 0 0 0 0 1174 7694 2942 2

Step Four – Cluster Merging
 In order to merge the SV cluster outputs of different cluster sizes and
cutoffs (Ci and Cd) from the previous step, step four should be carried out.
The cutoffs (Ci and Cd) could have been chosen differently for each cluster
size to retain the same false positive rate [1]. This script returns non-redundant
SV clusters from output files of different cluster sizes.

Synopsis

combine_output_different_cluster_sizes_including_blat_option.pl Infile1
Infile2 Infile3 …InfileN [Option]

where ‘InfileN’ is a series of input files of this step, i.e. the output files of
different cluster sizes from the outlier clustering step. These input files can be
generated by running the outlier clustering step multiple times for different
cluster sizes.

[Option]
 blat
 if this option is used, only clusters with blat score of 2 will be included.

Step Four – Converting to single line format
 To convert the merged clusters to single line format, step five can be
performed. The script reports the two coordinates in the ends within each
cluster that are closest to the SV events.

Synopsis

Cluster2SingleLine.pl Infile
where ‘Infile’ is in the format of the output file from Step Four.

9 of 18

PEMer Documentation

Other options
-s StartStep
This option can control which step the workflow starts executing from.

Other than the first step (set-up step) and the last two clustering step (Outlier
Clustering and Cluster Merging) of the workflow, there are five more steps in
the workflow (managed through a head program
‘Paired_End_Batch_Nodes.py’):

1). Removing linker sequence and extract pair end sequences
(‘map_linkers_and_split_raw_reads.py’);

2). Mapping pair ends on to the genome with megablast
(‘runMegablast.py’);
3). Refined mapping with Smith-Waterman best local alignment algorithm

(‘megablastOut2Needle.py’);
4). Placement (‘Hits2PlacementScore.py’);
5). Outlier identification

(‘RetrieveStrucVariantsFromEndPairsWithPlacementScore.py’);

The ‘-s’ option can be specified as any integer among {1,2,3,4,5}, which
corresponds to a starting step above. For instance, option ‘-s 3’ makes the
workflow to start executing from ‘step 3) Refined mapping with Smith-
Waterman’.
There are several restrictions and tips for using ‘-s’ option:

a. It can only be used when executing the ‘Paired_End_Batch_Nodes.py’
program. This program can carry out all the above five steps.

b. It can only be used when the input files for the step which the execution
starts from are in the correct format and location (See ‘Input and output
files’.), and the folders holding the output files for the steps that follow
have been created (these folders are automatically created by the set-up
step). Folders holding output files from the above five steps are ‘fa’,
‘megablast’, ‘needle’, ‘placement’ and ‘call’ respectively.

c. The usage of the command line should be:
Synopsis

Paired_End_Batch_Nodes.py [Options] InputFile BundleStart
BundleEnd

Options

-c ConfigFile
 This option is the same as in ‘Step one. [Option]’.

-s StartStep

Example
‘Paired_End_Batch_Nodes.py -c my_config.py -s 3./tmp/reads.fa.100.fa 100 199’

where ‘100’ and ‘199’ indicate that ‘reads.fa.100.fa’ contains reads
100 to 199 (0-based count). These numbers are used to generate a file
label unique to this bundle of reads.

10 of 18

PEMer Documentation

Adapting Solexa/SOLID data
 For processing Solexa/SOLID data, Maq (free downloadable at
http://maq.sourceforge.net/) is a frequently used software for mapping reads to
the genome. The user can easily plug Maq alignment output into PEMer workflow.
However, the immediate output from Maq is a binary file. The program described
below readily help convert the Maq alignment output format into PEMer readable
format. The program should be used in conjugate with the Maq software.

Synopsis
maq mapview InFile | Maq-Solexa-Solid2PEMer.pl

min_single_end_mapping_quality min_mapping_quality min_discordant
max_SV_size

where ‘InFile’ is the input files of this step, i.e. the binary output file from

Maq alignment. ‘min_single_end_mapping_quality’ and
‘min_mapping_quality’ are the mapping qualities in maq output (see
http://maq.sourceforge.net/ for detailed information about these quality
scores), ‘min_discordant’ is the upper PE-span cutoff, ‘max_SV_size’ is the
upper cutoff for SV size.

Example

maq mapview InFile | Maq-Solexa-Solid2PEMer.pl 0 20 2000 200000

Extra codes
Extra source code ‘runBlat.pl’ is provided in the folder

PEMer_Package/PEMer_workflow/Extra_code. This program can run blat
instead of megablast in step 2) described in ‘Other options’ section above.

Input and output files

We present the input and output files organized by stages of the
workflow.

1. Set up

 Input file should be in FASTA format, either uncompressed or a
compressed ‘.gz’ file. The content of the file should be one or more pairs
of lines: a descriptive line and a sequence line. The descriptive line should
begin with ‘>’ followed by an identifier (legal characters: letters, digits, ‘-‘,
‘+’, ‘_’, ‘:’) and possibly other text. If the additional text includes
‘uaccno=IDENTIFIER’ then that identifier is used, otherwise the one
following ‘>’ is used.

11 of 18

PEMer Documentation

 Example:

>1 length=305 uaccno=E1
GGTGGTGCTGATGCTGAAGGCCAGGGGCCCACTGAATAGAACATCACACGATT
GCTCACTTGCTTTCAGTTGCTTTATCCCTCATTACATAGACTCTGAATAACACTA
ATTAACTCCACCATCAACAACAGGACTAGTGAACACAGGTCTAGAACTGTTTTTG
ACAGTTTCTTATTGGCATTTTGGATGTATCCCATAAGGAATGATTGGAACCGAAA
GGGTTTGAAATTCAAACCCTTTCGGTTCCAACAAAGAGAAGGATAAGGGAAATG
GAAGAACTGTAACATTTTCACATATTTTATTAT
>2 length=251 uaccno=E2
CAGAACAGAGTATTTTCTCCTAAAAGACCTAAATGAAAACAACAGCTGAAAATGA
GGCATTATAAAGTTGGAACCGAAAGGGTTTGAATTCAAACCCTTTCGGTTCCAA
CACGGTAGCAGTGGGGAACATCCCCCAGGTAACTCAAACTTCTGGGGGGAAAG
GAATTTTTTCCTTACACCTGAAAGCTCTAAGAGCTTCTCAACTCCTGCCGCAGG
CGGGATGAGGGCAGAGTTGCAGGCACTTGGACACA

2. Bundle Analysis
2.1. The output files from the set-up step (‘PairedEndPipelineSQ.py’), are

the input files for the linker-removing step
(‘map_linkers_and_split_raw_reads.py’). These files are in the output
directory. Each file contains a bundle of reads (size of bundle specified by
‘package_size’—see ‘Configuration’) in the same format as the input file
for set up. Each file is named in the format ‘InputFile.BundleStart.fa’,
where ‘BundleStart’ specifies the read number (counting from 0) at the
start of the bundle.

2.2. The output files from the linker-removing step are the input files for
the megablast step (‘runMegablast.py’). They are located in the subfolder
‘fa’ of the output directory. Each file is in the FASTA format with alternate
descriptive line and sequence line. The descriptive line is in the following
format:

 ‘>ID.ID_End (linker=MatchStart-MatchEnd[LinderMatchLengthbp;SeqIdentity’

where ‘ID’ is the identifier of the read, ‘End’ is either letter ‘A’ or ‘B’
indicating the two ends from the same read, ‘MatchStart’ is the start
position of linker sequence in the read, ‘MatchEnd’ is the end position of
linker sequence in the read, and ‘SeqIdentity’ is the sequence identity of
the linker. Each file name has the format ‘InputFile-linkermapped-
BundleStart-BundleEnd.fa’.
An example of the first few lines of file ‘reads.fa-linkermapped-0-99.fa’:

>12345. 12345_A (linker=207-250[44bp;97.7%)
GGTGGTGCTGATGCTGAAGGCCAGGGGCCCACTGAATAGAACATCACACGATT
GCTCACTTGCTTTCAGTTGCTTTATCCCTCATTACATAGACTCTGAATAACACTA
ATTAACTCCACCATCAACAACAGGACTAGTGAACACAGGTCTAGAACTGTTTTTG
ACAGTTTCTTATTGG
CATTTTGGATGTATCCCATAAGGAATGA
>12345. 12345_B (linker=207-250[44bp;97.7%)
AAAGAGAAGGATAAGGGAAATGGAAGAACTGTAACATTTTCACATATTTTATTAT

12 of 18

PEMer Documentation

>12346. 12346_A (linker=67-110[44bp;100.0%)
CAGAACAGAGTATTTTCTCCTAAAAGACCTAAATGAAAACAACAGCTGAAAATGA
GGCATTATAAA
>12346. 12346_B (linker=67-110[44bp;100.0%)
ACGGTAGCAGTGGGGAACATCCCCCAGGTAACTCAAACTTCTGGGGGGAAAGG
AATTTTTTCCTTACACCTGAAAGCTCTAAGAGCTTCTCAACTCCTGCCGCAGGC
GGGATGAGGGCAGAGTTGCAGGCACTTGGACACA

2.3. The output files from the megablast step are the input files for the
Smith-Waterman step (‘megablastOut2Needle.py’). They are located in
the subfolder ‘megablast’ of the output directory. Each line of one of these
files has the format:

‘‘SubjectID’==‘[+-]QueryID’ (SStart QStart SEnd QEnd) Score’
where ‘SubjectID’ is the identifier of the subject sequence (i.e.,
chromosome), ‘QueryID’ is the identifier of the query sequence (i.e., read
end), ‘+’ or ‘-’ corresponds to a same or different strand alignment[DO
YOU MEAN THIS, OR SIMPLY ALIGNED TO THE PLUS OR MINUS
STRAND?], ‘SStart’ specifies the start position of the alignment in the
subject, ‘QStart’ specifies the start position of the alignment in the query,
‘SEnd’ specifies the end position of the alignment in the subject, ‘QEnd’
specifies the end position of the alignment in the query, ‘Score’ is the total
number of differences (mismatches + gaps) for non-affine gapping
parameters, or the actual (raw) score of the alignment for affine case.
Each file name has the format ‘InputFile-BundleStart-
BundleEnd.megablast’. Example output:

'chr21'=='+12345. 12345_A' (27464409 5 27464488 85) 1
'chr18'=='+12345. 12345_A' (67870449 44 67870482 78) 5
'chr3'=='-12345. 12345_B' (119312785 49 119312819 15) 5

If the user chooses to use the ‘runBlat.pl’ code in the
PEMer_Package/PEMer_workflow/Extra_code directory, the input and
output formats are the same as here described. (See also ‘Extra codes’
section)

2.4. The output files from the Smith-Waterman step are the input files for
the placement step (‘Hits2PlacementScore.py’). They are located in the
subfolder ‘needle’. Each file is in tab-delimited format with a header line
indicating the content of each column. The columns are:

‘CIRCLE_ID’: identifier of the input read;
‘READ_ID’: identifier of each end sequence;
‘CHR’: chromosome number that the sequence is mapped to;
‘START’: start position of alignment in the subject;
 ‘END’: end position of alignment in the subject;
‘STRAND’: ‘+’ or ‘-’, indicating the strand of the alignment;
‘PERC_SEQID_UNWEIGHED’: percentage sequence identity as
reported by the Smith-Waterman program;
‘LENGTH’: length of the alignment;

13 of 18

PEMer Documentation

Each file is named in the format ‘InputFile-BundleStart-
BundleEnd.needle’. Example output:

CIRCLE_ID READ_ID CHR START END STRAND
PERC_SEQID_UNWEIGHED LENGTH
12345 12345_B chr21 21893469 21893516 + 100.0 48
12345 12345_B chr6 90067939 90067994 + 75.0 42
12345 12345_B chr6 51662379 51662436 + 74.1 43
12345 12345_B chr11 129632153 129632210 + 72.4 42
12345 12345_B chr18 56661507 56661561 + 70.9 39
12345 12345_B chr1 197949293 197949341 + 83.7 41

2.5. The output files after the placement step are the input files for the
outlier-identification step (‘Hits2PlacementScore.py’) are located in the
subfolder ‘placement’. Each file is in tab-delimited format with a header
line indicating the content of each column. The columns are:

‘CIRCLE_ID’: identifier of the input read;
‘PLACEMENT_SCORE’: placement score of each pair of ends.
 ‘CHR_A/B’: chromosome number that end sequence A/B is mapped to;
‘START_A/B’: start position of alignment in the subject for end A/B;
 ‘END_A/B’: end position of alignment in the subject for end A/B;
‘STRAND_A/B’: ‘+’ or ‘-’, indicating strand of the alignment for end A/B;
‘PERC_SEQID_UNWEIGHED_A/B’: percentage sequence identity for

end A/B;
‘LENGTH_A/B’: length of the alignment for end A/B;
Each file is named in the format ‘InputFile-BundleStart-

BundleEnd.placemnt’. Example output:

CIRCLE_ID PLACEMENT_SCORE CHR_A START_A END_A STRAND_A
PERC_SEQID_UNWEIGHED_A LENGTH_A CHR_B START_B END_B
STRAND_B PERC_SEQID_UNWEIGHED_B LENGTH_B
12345 1.00 chr21 44268698 44268900 + 97.6 202 chr21
44265714 44265767 + 98.2 54
12346 1.00 chr21 36816083 36816218 + 98.5 135 chr21
36814397 36814497 + 97.1 100
22345 0.89 chr21 27464406 27464488 + 97.6 83 chr21
27462315 27462456 + 96.6 141

3. Outlier Clustering
The output files after the outlier-identification step are held in the

subfolder ‘call’. Each file is in tab-delimited format with a header line
indicating the content of each column. The columns are:

‘CIRCLE_ID’: identifier of the input read;
‘PLACEMENT_SCORE’: placement score of each pair of ends.
 ‘CHR_A/B’: chromosome number that end sequence A/B is mapped to;
‘START_A/B’: start position of alignment in the subject for end A/B;
 ‘END_A/B’: end position of alignment in the subject for end A/B;
‘STRAND_A/B’: ‘+’ or ‘-’, indicating strand of the alignment for end A/B;

14 of 18

PEMer Documentation

‘PERC_SEQID_UNWEIGHED_A/B’: percentage sequence identity for
end A/B;

‘LENGTH_A/B’: length of the alignment for end A/B;
‘CALL’: prediction of insertion, deletion, inversion or translocation;

(Translocation is predicted only when ‘trans’ is set to ‘True’—
see ‘Configuration’.)

Each file name has the format ‘InputFile-BundleStart-BundleEnd.call’.
Example:

CIRCLE_ID PLACEMENT_SCORE CHR_A START_A END_A STRAND_A
PERC_SEQID_UNWEIGHED_A LENGTH_A CHR_B START_B END_B
STRAND_B PERC_SEQID_UNWEIGHED_B LENGTH_B CALL
12345 0.78 chr21 35043883 35044092 + 99.1 209 chr21
35042920 35042951 + 100.0 32 [predicted insertion in sample]
12346 0.56 chr20 4474203 4474218 - 100.0 16 chr21 42103738
42103917 + 97.3 179 [predicted translocation]
12349 0.67 chr21 31676590 31676802 + 97.7 211 chr21
31675733 31675761 + 100.0 29 [predicted insertion in sample]
13345 0.78 chr21 44878584 44878665 + 97.6 82 chr21
44877564 30580692 + 94.1 111 [predicted deletion in sample]

The input file for the outlier clustering step is a merged file of all these

output files. The header line of each output file is removed before merging
except that only one header line is retained for the merged file.

The output for the outlier clustering step is printed to standard out
stream by default. Each member of a cluster is output as a line in the
same format as the output for outlier identification. Each cluster of lines of
outliers is preceded by an annotation line starting with a ‘#’. Example
output:

#>Deletion-Cluster 1 (max-score=82;9-in-11 for INDELs; 0.73 for INVs; HS-
Stringency-Score=13):
E1052532 0.67 chr2 35694020 35694078 + 95.0 57 chr2
35686983 35687157 + 98.9 175 [predicted deletion in sample]
E1215823 0.67 chr2 35693815 35694006 + 95.5 189 chr2
35687988 35688031 + 97.7 43 [predicted deletion in sample]

#>Deletion-Cluster 2 (max-score=82;9-in-11 for INDELs; 0.73 for INVs; HS-
Stringency-Score=16):
E1242412 0.67 chr2 129146490 129146528 + 97.5 39 chr2
129138027 129138238 + 96.8 210 [predicted deletion in sample]
E1413155 0.78 chr2 129148166 129148319 + 98.1 153 chr2
129137299 129137403 + 99.1 105 [predicted deletion in sample]

#>Deletion-Cluster 3 (max-score=82;9-in-11 for INDELs; 0.73 for INVs; HS-
Stringency-Score=25):
E100163 0.67 chr2 119859966 119860004 + 95.1 39 chr2
119852233 119852430 + 97.5 194 [predicted deletion in sample]

15 of 18

PEMer Documentation

E1016985 0.67 chr2 119861889 119862045 + 95.7 154 chr2
119852424 119852523 + 100.0 100 [predicted deletion in sample]
E1025827 0.78 chr2 119859468 119859521 + 98.2 54 chr2
119850855 119851037 + 97.3 182 [predicted deletion in sample]

Note: If ‘runBatch’ is ‘True’ (see ‘runBatch’ in ‘Configuration’ and in

‘Executing the workflow’.), a file named ‘jobs’ is created in the output
directory. The file contains the command lines for running each bundle of
reads though steps 2.1-2.5 of the workflow. These commands can then be
processed on multiple CPUs simultaneously. By default, the command line
is formatted as follows:

‘cd working_directory ; touch ./tmp/stamp/0.Start ; (./Paired_End_Batch_Nodes.py -
c my_config.py ./tmp/reads.fa.0.fa 0 99) > ./tmp/log/0.log 2>&1 ;
touch ./tmp/stamp/0.Stop’

(Refer to ‘Executing the workflow’ for details of the options.)

4. Cluster Merging

 The input files for the cluster merging step are a series of outputs from
the outlier clustering step. The output file for the cluster merging step is of
the same format.

5. Converting to single line format
 The input files for this converting step is the output file from cluster
merging step. Example output:

>Deletion-Cluster 1 chr21:30580921-30592102 (overlapping_paired_ends=4;
intervals=30580017-30580921|30592102-30594877; estimated size of SV=10
012; HS-score=1; Uniqueness-Qual-Score=0
[score_of_at_least_4_is_very_high_qual])
>Deletion-Cluster 2 chr21:20481057-20486594 (overlapping_paired_ends=4;
intervals=20478562-20481057|20486594-20489442; estimated size of SV=52
01; HS-score=2; Uniqueness-Qual-Score=0
[score_of_at_least_4_is_very_high_qual])
>Deletion-Cluster 3 chr21:46696116-46709635 (overlapping_paired_ends=2;
intervals=46695108-46696116|46709635-46710024; estimated size of SV=11
209; HS-score=1; Uniqueness-Qual-Score=0
[score_of_at_least_4_is_very_high_qual])

6. Discarded files and other

4.1. Discarded files
All discarded files go to the ‘discard’ folder. Discarded reads are

generated in three steps in the workflow:
6.1.1. Linker removing step. File name format: ‘InputFile-linkermapped-

BundleStart-BundleEnd.fa_discard’. Contents give reasons for
discarding.

16 of 18

PEMer Documentation

4.1.2 Placement step. File name format: ‘InputFile-BundleStart-
BundleEnd.placemnt_discard’. Contents give reasons for
discarding.

4.1.3 Outlier identification step. File name format: ‘InputFile-
BundleStart-BundleEnd.call_discard’. Files are in tab delimited
format and the columns are the same as the output files for the
outlier-identification step, expect that the last column ‘CALL’ holds
the reasons for discarding.

4.2. Log files
If ‘runBatch’ is ‘True’ and the default command line format is used,

the ‘> ./tmp/log/0.log 2>&1’ part of the command directs all the standard
output and standard error messages to a file in the ‘log’ folder. The
files are named as ‘BundleStart.log’, where ‘BundleStart’ specifies the
read number at the start of the bundle.

4.3. Stamp files
If ‘runBatch’ is ‘True’ and the default command line format is used,

the ‘touch’ command records the start and end of execution time for
each bundle of reads. The files can be found in the ‘stamp’ folder.

7. Adapting Solexa /SOLID data
 If the user chooses to use Maq as the alignment software for processing

Solexa/SOLID data, this step is necessary to convert Maq output file to
PEMer readable format (See ‘Executables’ for more information). The input
files for this step is the binary output file from Maq program.

 The output file from this step is in the similar format as the outlier
clustering step. Therefore, it can be analyzed by PEMer in the later steps.
An example is as follows:

CIRCLE_ID(PSEUDO-454-FORMAT;MIN-SINGLE_END_MAP-QUAL=0;MIN-MAP-

QUAL=20;MIN-DISCORDANT=2000;MAX-SV-SIZE=200000) PLACEMENT_SCORE
CHR_A START_A END_A STRAND_A PERC_SEQID_UNWEIGHED_A
LENGTH_A CHR_B START_B END_B STRAND_B
PERC_SEQID_UNWEIGHED_B LENGTH_B CALL

AV_0003_FC3009KAAXX:6:58:1498:785 0.78 chr1 2605374 2605421 + 99.50
47 chr1 2574643 2574690 + 99.27 47 [predicted deletion in sample]

XAV_0003_FC3009KAAXX:6:2:1588:830 0.78 chr1 2618670 2618717 + 99.22
47 chr1 2611945 2611992 + 99.20 47 [predicted deletion in sample]

AV_0003_FC3009KAAXX:6:55:1265:413 0.78 chr1 2619066 2619113 + 99.29
47 chr1 2609383 2609430 + 99.54 47 [predicted deletion in sample]

17 of 18

PEMer Documentation

18 of 18

Reference

1. Korbel J, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z, Snyder M, Gerstein M:
PEMer: a computational framework with simulation-based error models for
inferring genomic structural variants from massive paired-end sequencing data.
Genome Biology 2009, 10:R23.

2. Zhang Z., Schwartz S., Wagner L., & Miller W., A greedy algorithm for aligning
DNA sequences, J Comput Biol 2000; 7:203-14.

3. Rice,P. Longden,I. and Bleasby,A. EMBOSS: The European Molecular Biology
Open Software Suite, Trends in Genetics 2000, 16:276-277.

4. SV_Simulation_ Documentation.pdf in the PEMer package.

