Biomedical Data Science:
Mining and Modeling

Deep Learning ll:
Deep Supervised Learning,
Feed-forward Neural Networks, Convolutional Neural
Networks, and Recurrent Neural Networks

Dr. Martin Rengiang Min
NEC Laboratories America |

Supervised Deep Learning

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0);

Pt & & D S Rl & & Rl o i & & & P P e ot & S P P PP P it & O e

Convolutions and RelLU
B S N & B S & S & S L L e o o o L e N O s SN & &

,T M ooling
””’ﬁ”"”ﬂ' o 'h”””'

3 / Convolutions and RelLU
7= weyy I—'-—’_:ﬂﬂl”

keH2 .4 A ‘4
| | |

Output units () ()

\

,50

f X | ooling
/

Hidden units H2

/ “o ol Sy W e

b

jeH1
Input units () () O

y;=1@z) L
Z=3 wx EEE——

ielnput * A

LeCun, Bengio, and Hinton, Deep Learning. Nature 2015

Supervised Deep Learning

Training

Training

Validation

Validation

Test Data

Test Data

Supervised Machine Learning:

Feature Representation +
Classification/Regression Loss +
Optimization (on training data)

] Prediction (on test data)

(hyper-parameter tuning with n-fold CV, n=5)

Supervised Deep Learning:

Input features and adaptively learned
features by hidden layers + Mean Squared
Error/Hinge Loss/Cross-Entropy Loss + SGD
with Momentum (on large-scale training data)
"] Good Prediction Performance (on test
data)

(hyper-parameter tuning on a validation set)

Fully Connected Layer

"So
X

y =W X

Activation Functions

S|gmo|d 1 Leaky RelLU
_ 1 max(0.1x, x)
O'(CB) 14e =

tanh V Maxout

ta,nh(:zc) e ﬂ ° max(w{x + b1, ng + b2)

RelLU ELU

max(0,2) {Z(e“’ Y . i

Good default choice

DNN with sigmoid and tanh activation functions has serious vanishing
gradient and saturation issue
y

Grad = y(1-y)

Grad = 1-y?

(o = (4 —

y= — "
e +e % /
2 //,U 2 - Z

RelLU Activation Function

Avoid vanishing gradient and less computationally expensive than sigmoid and
tanh

But it might cause dead neuron and the activity is not bounded above

Softmax Activation Function

Z.
e l
The output units in a softmax group y —
use a non-local non-linearity: ! z : ezj
Vi softmax ;
€ grou
group J €8group
2
. . Yi\l=);
this is called the “logit OZ.

l

Often used on top of a fully connected layer, which transforms an activity vector z
into probabilities of classifying x into K classes

Loss Function: Cross-Entropy Loss

The right cost function is the negative
log probability of the target class.

C has a very big gradient when the
target value is 1 and the output is

almost zero.

A value of 0.001 is much better than

0.0000001

The steepness of dC/dy exactly balances

the flatness of dy/dz

C= —th log 7

PN
Target Class

Loss Function: Mean Squared Error

1 ;
MSE = —) (¥; - Y;)°
7 2% = %)

MSE is a very bad cost function for softmax output units.
Why?

10

Loss Function: Hinge Loss

Zj;éy.i max(O, Sj — Sy, T 1)

The score for the wrong class must be at least 1 margin
smaller than the score for the ground-truth class;
Otherwise, there is a loss incurred

11

Deep Feedforward Neural Network with Sigmoid Hidden Units

e A L i

visible units

DNN

y

h3
w3

h2
w2

h1

w1
X

12

Backpropagation with a Computational Graph

-

Loss = Squared Error * Y «

1o 27 (y-1) -
W4/ N

13

Train a Deep Neural Network with SGD

Split our training dataset into N mini-batches with batch size b
For Iteration = 1, ..., Num_Max_lterations
randomly choose a mini-batch D,
wi>Di

where 7 is the iteration index, v is the momentum variable, ¢ is the learning rate, and <g—i

oL
Viy1 = 0.9-v; —0.0005 € -w; —€- <6_w

Wit1 = Wi+ Vit

, > is
w; D‘;’

the average over the ith batch D; of the derivative of the objective with respect to w, evaluated at
w;.

(you can also have two loops: outer loop over epochs, inner loop over mini-batches)

14

DNN works much worse than a shallow CNN even
on MNIST!

~1.0% vs. ~0.60%

Why?

15

Hubel and Wiesel Experiment

https://www.youtube.com/watch?v=0GxVIKJgX5E

16

https://www.youtube.com/watch?v=OGxVfKJqX5E

Message from Last Lecture

Deep learners should combine their
knowledge with large-scale data to
grow programs, encode essential
knowledge into network structures,
and let backpropagation and
stochastic gradient descent do the

heavy lifting.

Convolutional Neural Network: LeNet (1998)

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 =
S2: f. maps

32x32
6@14x1

| -
Full conrjlection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

LeCun et al., 1998 "

1D Convolution with W =5, F = 3, Stride = 2,
Padding = 1

Output Size = (W - F +2P)/S + 1

http://cs231n.github.io/convolutional-networks/

19

\

wait

for

video —

and ||
do -

rent
it

n x k representation of
sentence with static and
non-static channels

Convolutional layer with
multiple filter widths and
feature maps

D Convolution over Sentences

Max-over-time Fully connected layer
pooling with dropout and
softmax output

Yoon Kim, Convolutional Neural Networks for Sentence

Classification. EMNLP 2014

20

2D Convolutions

N.B.: Blue maps are inputs, and cyan maps are outputs.

No padding, no strides Arbitrary padding, no strides Half padding, no strides Full padding, no strides

No padding, strides Padding, strides Padding, strides (odd)
https://github.com/vdumoulin/conv_arithmetic

21

2D Convolution Animations

See the animation at

https://github.com/vdumoulin/conv arithmetic

22

https://github.com/vdumoulin/conv_arithmetic

2D 3x3 Convolution Applied to RGB Input of Size 5x5

Input

Kerne|

Outpyt

Picture credit: https://thomelane.github.io/convolutions/2DConvRGB.html

23

2D Convolutions in Numbers

http://cs231n.qgithub.io/convolutional-networks/

24

http://cs231n.github.io/convolutional-networks/

3D Convolution

Input
Kerne Output

Picture credit: https://thomelane.github.io/convolutions/3DConv.html

25

Max Pooling

224x224x64 .)
i aas Single depth slice
A
pool = 11124
max pool with 2x2 filters
, Balmon 7 | 8 and stride 2 6 | 8
l 1 3 | 2 . 3| 4
1 | 2 -
> S 112
22k downsampling
112 >
224 y

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example, the
input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the
volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here shown
with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

http://cs231n.github.io/convolutional-networks/

Average Pooling is also widely used, especially in NLP e

Data Augmentation

Random erasing, horizontal flipping, rotation, scaling (with cropping), cropping, contrast, color

Picture credit: https://nanonets.com/blog/data-augmentation-how-to-use-
deep-learning-when-you-have-limited-data-part-2/

27

[0, 0.89, 0.11, 0]

x0.11 x 0.89

[0,0,1,0] [0,1,0,0]

Mixup

Az + (1= Nz, where z;, z; are raw input vectors
Ay + (1 =Ny, where y;, y; are one-hot label encodings

z
)

Zhang et al., Mixup: beyond empirical risk minimization.
ICLR 2018.

Picture credit: https://www.dlology.com/blog/how-to-do-mixup-
training-from-image-files-in-keras/

28

Case Study: AlexNet

" 1mageNet Classification with Deep Convolutional Neural ...

https://papers.nips.cc » paper » 4824-imagenet-classification-with-deep-co... v

by A Krizhevsky - 2012 - Cited by 54415 - Related articles

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution
images in the ImageNet LSVRC-2010 contest into the 1000 dif-.

NIPS 2012

29

AlexNet Network Structure

................... . :::.‘ ! 31- . 5
""""""""" .:_\._:..'. e
«,\ 153 55 2048 20as \dense
7 128 P — e
AN, 13 13
e ‘ : T, 3] 1 e
. — . e b [Gese) et
=] .
192 192 128 Max .
Max 128 Max pooling 2038 2048
pooling pooling

Pay attention to the output Size and the number of parameters

30

Training AlexNet using SGD with Momentum and Weight
Decay

+1 = 0.9 0.0005
i = 0.9-v; —0. R R
Vit Y ow

Wiyl = Wi+ Vg1

)
D;
oL

where ¢ is the iteration index, v is the momentum variable, ¢ is the learning rate, and <a_w w,> 18
2 Dz.

the average over the ith batch D; of the derivative of the objective with respect to w, evaluated at
w;.

31

AlexNet with ReLU Converges Much Faster

0.75

Q 0.5

® \

S S -

) ~ _

2 e

£ - -

@ 0251 ~ ~

-
0 : T T r T T T
0 5 10 15 20 25 30 35 40

Epochs

Figure 1: A four-layer convolutional neural
network with ReLLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

32

AlexNet vs. VGG
Case Study: VGGNet

Softmax | | FC 4096 |

G

[Simonyan and Zisserman, 2014] w [owow 1 [caw
fc7 | FC 4096] | Pool J
fo6

:
Detalls. conv5-3
y conv5-2
ILSV_RC.14 2nd in classification, 1stin o
localization
- oy tni : conv4-3
Similar training procedure as Krizhevsky o
2012
- No Local Response Normalisation (LRN) e . -
- Use VGG16 or VGG19 (VGG19 only convs conva-1
. conv4 | Poo | | Poo |
slightly better, more memory) . ‘ ‘
_ conv3 conv2-1
Use ensembles for be_:st results —— s
- FC7 features generalize well to other conv2 convi-2
convi convi-1
tasks C] 1
AlexNet VGG16 VGG19

Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2017

Softmax

£C 1000 fc8
FC 4096 fc7
FC 4096 fcé

conv5-3
conv5-2

conv5-1

conv4-3
conv4-2

conv4-1

conv3-2

conv3-1

conv2-2

conv2-1

convi-2

convi-1

R

Input

VGG16 /

Common names

The deeper, the better?

207 20r

% & 56-layer
o) N’

S é ol 20-layer
%0 56-layer 2
R= 5

o] N

& 20-layer

o ,

1 2 5 6 OO 1 2

[=]

5 6

iter.3 (1e4)4 iter.3 (1e4)4
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network

has higher training error, and thus test error. Similar phenomena
on ImageNet

He et al.,, CVPR 2015

35

Learning Residual Feature Maps is Easier

weight layer
]-"(x) l relu <
weight layer identity

Figure 2. Residual learning: a building block.

He et al., Deep Residual Learning for Image Recognition. CVPR 2015
36

Learning Residual is Easier

256-d

y

, 64

| relu

| 3x3, 64 |
l relu

| 1x1, 256

He et al., Deep Residual Learning for Image Recognition. CVPR 2015

37

VGG-19 34-layer plain 34-layer residual

image image image
oty [Boames]
sze: 224
[3aeme]
pool, /2
output
el [ascom 28|
[3acom.128 | [| [w62 |
v v
pool, 12 posl, /2 pod, 12
output ¥ ¥
5% [oamzs] [meme]
A2 ¥
[33,256 [aeowe]
L2 L2
[Eoewse] [Cmeoma]
¥
[hamm] (.|
I con, 64 3 con 64
S com 64 3o, 64
12
output "% £
28 [aemsn [Eawm)
k2 ¥
Cmewsz] [Comewa]
¥ 2
33 com, 512 348 con, 128
[z [3eewim]
output
sze-14
output

size:7

Gt []
see-1

Figure 3. E le network archi r ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

VGG
VS.
ResNet

He et al., CVPR 2015

38

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

/ NEC Labs America Model
28.2

30

25

20

15

10

16.4

8 layers

\
|
‘ I

2010 2011 2012
Linetal Sanchez & Krizhevsky et al
Perronnin (AlexNet)

ZFNet: Improved
hyperparameters over

AlexNet \

11.7

8 layers

2013

Zeiler &
Fergus

Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

152 layers| |152 layers| |152 layers
Ao A A
19 layers| |22 layers|
7.3 6.7
3.6
l ““““““ . H m =
2014 2014 2015 2016 2017
Simonyan & Szegedy et al He et al Shao et al Hu et al
Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)

5.1

Human

Russakovsky et al

39

Conv2d in PyTorch
Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1,

. [SOURCE]
padding=0, dilation=1, groups=1, bias=True, padding_mode="'zeros")

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (IV', Cip, H, W) and output
(N, Cout y Hout Wout) can be precisely described as:

Cin—1
out(N;, Cout;) = bias(Cout;) + Z weight(Cout, , k) * input(N;, k)
k=0

where * is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of
channels, H is a height of input planes in pixels, and W' is width in pixels.

e stride controls the stride for the cross-correlation, a single number or a tuple.

e padding controls the amount of implicit zero-paddings on both sides for padding number
of points for each dimension.

e dilation controls the spacing between the kernel points; also known as the a trous
algorithm. It is harder to describe, but this link has a nice visualization of what dilation

does.

e groups controls the connections between inputs and outputs. in_channels and
40

out_channels must both be divisible by groups. For example,

Demonstration of training a simple CNN Classifier on
CIFAR10 using PyTorch in Jupyter Notebook

41

Implement Your Own Forward and Backforward in PyTorch

import torch

class MyReLU(torch.autograd.Function):
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.

@staticmethod

def forward(ctx, input):
In the forward pass we receive a Tensor containing the input and return
a Tensor containing the output. ctx is a context object that can be used
to stash information for backward computation. You can cache arbitrary
objects for use in the backward pass using the ctx.save for backward method.
ctx.save_for backward(input)
return input.clamp(min=0)

@staticmethod
def backward(ctx, grad_output):
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
input, = ctx.saved_tensors
grad_input = grad_output.clone()
grad_input[input < 0] = 0
return grad_input

42

Implement Your Own Forward and Backforward in PyTorch

dtype = torch.float
device = torch.device("cpu")
device = torch.device("cuda:0") # Uncomment this to run on GPU

N is batch size; D in is input dimension;
H is hidden dimension; D out is output dimension.
N, D _in, H, D out = 64, 1000, 100, 10

Create random Tensors to hold input and outputs.
X = torch.randn(N, D _in, device=device, dtype=dtype)
y = torch.randn(N, D out, device=device, dtype=dtype)

Create random Tensors for weights.
wl = torch.randn(D_in, H, device=device, dtype=dtype, requires grad=True)
w2 = torch.randn(H, D out, device=device, dtype=dtype, requires grad=True)

learning rate = le-6

for t in range(500):
To apply our Function, we use Function.apply method. We alias this as
relu = MyReLU.apply

'relu’.

43

Implement Your Own Forward and Backforward in PyTorch

learning_rate = le-6

max_iter = 500

for t in range(max iter):
To apply our Function, we use Function.apply method. We alias this as 'relu’.
relu = MyReLU.apply

Forward pass: compute predicted y using operations; we compute
ReLU using our custom autograd operation.
y_pred = relu(x.mm(wl)).mm(w2)

Compute and print loss
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:

print(t, loss.item())

Use autograd to compute the backward pass.
loss.backward()

Update weights using gradient descent
with torch.no_grad():

wl -= learning rate * wl.grad

w2 -= learning rate * w2.grad

Manually zero the gradients after updating weights
wl.grad.zero ()
w2.grad.zero_()

What can we do with a pre-trained Deep CNN on ImageNet?

e Simple Transfer learning

o We transfer our learned model on the ImageNet to a different domain, for e.g., fine-grained flower

category classification

o It only works when the transferred domain is closely related to the source domain of ImageNet

e Few-shot learning

o In this task, for each class, we only have a few labeled training examples

o We can use the learned feature embeddings or their (weighted) mean as prototype(s)
e Zero-shot learning

In this task, we don’t have any training example for some classes, but we have semantic descriptions

about them

A simple idea: Output a 1000-class probabilities of a test image and use a convex combination of the
semantic descriptions of the top k known classes to construct semantic features of the testimage 4°

Zero-shot Learning Example

Softmax Baseline [7]

DeViSE [6]

ConSE (10)

Test Image

wig

fur coat

Saluki, gazelle hound
Afghan hound, Afghan
stole

ostrich, Struthio camelus
black stork, Ciconia nigra
vulture

crane

peacock

sea lion

plane, carpenter’s plane
cowboy boot

loggerhead, loggerhead turtle
goose

hamster

broccoli
Pomeranian
capuchin, ringtail
weasel

water spaniel

tea gown

bridal gown, wedding gown
spaniel

tights, leotards

heron
owl, bird of Minerva, bird of night
hawk
bird of prey, raptor, raptorial bird
finch

elephant

turtle

turtleneck, turtle, polo-neck
flip-flop, thong

handcart, pushcart, cart, go-cart

golden hamster, Syrian hamster
rhesus, rhesus monkey

pipe

shaker

American mink, Mustela vison

https://arxiv.orq/pdf/1312.5650.pdf

business suit

dress, frock

hairpiece, false hair, postiche
swimsuit, swimwear, bathing suit
kit, outfit

ratite, ratite bird, flightless bird
peafowl, bird of Juno

common spoonbill

New World vulture, cathartid
Greek partridge, rock partridge

California sea lion
Steller sea lion
Australian sea lion
South American sea lion
eared seal

golden hamster, Syrian hamster
rodent, gnawer

Eurasian hamster

rhesus, rhesus monkey

rabbit, coney, cony

46

https://arxiv.org/pdf/1312.5650.pdf

What do CNN (AlexNet-like) filters look like?

Zeiler and Fergus, 2013:
Visualizing and Understanding Convolutional Networks

An important convolutional operation called Transposed Convolution
was invented in this paper, which will be discussed in Lec 5.

47

Figure 2. Visua
of feature ma

ion of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
ss the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of

49

Memoryless models for sequences (Hinton’s Slide)

e Autoregressive models

Predict the nexttermin a W Wi
sequence from a fixed =2 e
number of previous terms Linput(t-2) input(t-1) input(t)

using “delay taps”.

e Feed-forward neural nets hidden

These generalize
autoregressive models by :

non-linear hidden units. e.qg.
Bengio’s first language
model.

Beyond memoryless models (Hinton)

* |f we give our generative model some hidden state, and if
we give this hidden state its own internal dynamics, we get
a much more interesting kind of model.
— It can store information in its hidden state for a long time.

— If the dynamics is noisy and the way it generates outputs from its
hidden state is noisy, we can never know its exact hidden state.

— The best we can do is to infer a probability distribution over the
space of hidden state vectors.

* This inference is only tractable for two types of hidden state
model.

— The next three slides are mainly intended for people who already

know about these two types of hidden state model. They show
how RNNs differ.

— Do not worry if you cannot follow the details.

Linear Dynamical Systems (engineers love them!) (Hinton)
These are generative models. They have a real-valued

hidden state that cannot be observed directly. time -

— The hidden state has linear dynamics with Q o =
Gaussian noise and produces the observations]] ©
using a linear model with Gaussian noise. - i

. =3 =3 =3
To predict the next output (so that we can shoot gl 2
down the missile) we need to infer the hidden state. g g g

— Alinearly transformed Gaussian is a Gaussian. So W
the distribution over the hidden state given the Y e e
data so far is Gaussian. It can be computed using e _5, 2 <8 <

(s —~+ 35 ~+ 3
“Kalman filtering”. oa 0a 0a

Hidden Markov Models (computer scientists love them!) (Hinton)

Hidden Markov Models have a discrete one-of-N
hidden state. Transitions between states are
stochastic and controlled by a transition matrix.
The outputs produced by a state are stochastic.

— We cannot be sure which state produced a
given output. So the state is “hidden”.

— It is easy to represent a probability
distribution across N states with N numbers.

To predict the next output we need to infer the
probability distribution over hidden states.

— HMMs have efficient algorithms for inference
and learning.

indino

1ndino

indino

OO0 @O

"Yeoleole

000 @

time >

A fundamental limitation of HMMs (Hinton)

* Consider what happens when a hidden Markov model generates data.

— At each time step it must select one of its hidden states. So with N
hidden states it can only remember log(N) bits about what it
generated so far.

* Consider the information that the first half of an utterance contains about
the second half:

— The syntax needs to fit (e.g. number and tense agreement).
— The semantics needs to fit. The intonation needs to fit.
— The accent, rate, volume, and vocal tract characteristics must all fit.

* All these aspects combined could be 100 bits of information that the first
half of an utterance needs to convey to the second half. 22100 is big!

Recurrent neural networks (Hinton)

* RNNs are very powerful, because they time =
combine two properties: o o g
— Distributed hidden state that allows E ‘;’: 2
them to store a lot of information
about the past efficiently. - - -
— Non-linear dynamics that allows X g [— &
them to update their hidden state - - >
in complicated ways.
* With enough neurons and time, RNNs é é é
can compute anything that can be ~ - -

computed by your computer.

Do generative models need to be
stochastic? (Hinton)

e Recurrent neural networks
are deterministic.

— So think of the hidden
state of an RNN as the

* Linear dynamical systems
and hidden Markov models
are stochastic models.

— But the posterior

probability distribution
over their hidden states
given the observed data
so far is a deterministic
function of the data.

equivalent of the
deterministic probability
distribution over hidden
statesin a linear
dynamical system or
hidden Markov model.

From Standard Neural Networks to Recurrent Neural Networks

Let's make the model easily extendable to model sequences with arbitrary
lengths by weight sharing

y
h 3
1 h, > D S > —> —<
> — T i e
> h
1 W W W W
: T [
X X X X7
X X X 1 2 3
X

57

Recurrent Neural Networks (RNN)

At time step t, the hidden units accumulate past information about the

input sequence. Hidden activity vector h;only depend on current
input x{and previous hidden activity vector hy_4

hi|= fW(ht—la wt)

hy—2 — & & > 0 < | npew state / old state input vector at
some time step

some function
with parameters W

Xt

0

—

RNN

58

Vanilla Recurrent Neural Networks

' hy = fW(h’t—la wt)

hy — RN/>

" hy = tanh(Wpphy_y + Wypxy)

Yt = Why hy

59

Different Architectures of RNN

one to one one to many many to one many to many many to many

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification
where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

Picture Credit: http://karpathy.qgithub.io/2015/05/21/rnn-effectiveness/

60

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Many-to-Many Vanilla RNN

y
1

y
2

Yy | ...
3

VA

61

“

target chars: ‘e”

1.0
2.2
-3.0
4.1

output layer

|

0.3
hidden layer | -0.1

0.9

Training of Char-RNN

ulu

uln

1
: 0
tl
input layer |
0

input chars: “h”

W_hh

On

0.2
-1.5
-0.1
22

T W_hy

0.5 0.1
0.3 0.5
-1.0 1.9
12 -1.1
1.0 0.1
> 0.3 -0.5
0.1 -0.3
0 0
1 0
0 1
0 0
“e" “I"

T
Pr(x) = H Pr(zs41(y:)

N
Ut = by + Z Whnyhi

n=1

vt = V(9t)

Pr(zep1 = kly) = yf =

exp (4F)

Zﬁ:l exp (?f,)

T
L(x)=-) logy*
t=1

AL (x)
o9k

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This diagram shows the
activations in the forward pass when the RNN is fed the characters "hell" as input. The output layer contains confidences the
RNN assigns for the next character (vocabulary is "h,e,l,0"); We want the green numbers to be high and red numbers to be low.

Picture Credit: http://karpathy.qgithub.io/2015/05/21/rnn-effectiveness/

k
Yy — 6k,$:+1

62

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Forward through entire sequence to

BaCkpropagat|on through tlme compute loss, then backward through

entire sequence to compute gradient

__—

\/

Al

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

Truncated Backpropagation through time

Loss

// [T X \\ Run forward and backward
through chunks of the

sequence instead of whole
sequence

>

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

64

Truncated Backpropagation through time

Loss

RN

/ l I |

> >

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

65

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

Truncated Backpropagation through time

> >

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

66

Inference of Char-RNN

At test time, sample a character from the current model at each step, feed the

current sampled character as input to the next time step

Sample

Softmax

output layer

hidden layer | -

input layer

input chars:

uln

“e” I “0”
t t t t
.03 25 M M
A3 20 A7 02
.00 .05 68 .08
84 50 03 79
t t t t
1.0 05 01 02
22 03 05 15
-3.0 1.0 1.9 -0.1
4.1 il i 2.2
[O O
03 1.0 0.1 |w hnl-0.3
0.1 03 0.5 > 0.9
0.9 0.1 0.3 0.7
[T A A O
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
= g = e

/‘A'

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

67

Karpathy’s Char-RNN on Shakespeare Articles

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

68

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80); G t d
if (state) enera e
cmd = (int)(int_state ® (in_8(&ch->ch flags) & Cmd) ? 2 1);
else ’ : C COde

seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
((count & 0x00000000£ff£f£f£f£f£8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc_md.kexec_ handle, 0x20000000);
pipe_set_bytes(i, 0);
}
/* Free our user pages pointer to place camera if all dash
subsystem info = &of changes[PAGE_SIZE]);
rek controls(offset, idx, &soffset);
/* Now we want to deliberately put it to device
control_check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq_puts(s, “"policy ");

Source: http://karpathy.qgithub.io/2015/05/21/rmn-effectiveness/

69

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Searching for interpretable cells

F_SIGPENDING) ;

If statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

nnn - ranradnirad with narmiccinn

70
Source: http://karpathy.github.io/2015/05/21/rn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://qist.qithub.com/karpathy/d4dee56686 782911086

)] min-char-rnn.py

Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License

import numpy as np

data I/0

data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))

data_size, vocab_size = len(data), len(chars)

print 'data has %d characters, %d unique.' % (data_size, vocab_size)
char_to_ix = { ch:i for i,ch in enumerate(chars) }

ix_to_char = { i:ch for i,ch in enumerate(chars) }

hyperparameters

hidden_size = 100 # size of hidden layer of neurons
seq_length = 25 # number of steps to unroll the RNN for
learning_rate = le-1

model parameters

Wxh = np.random.randn(hidden_size, vocab_size)%0.01 # input to hidden
Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden
Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
bh = np.zeros((hidden_size, 1)) # hidden bias

by = np.zeros((vocab_size, 1)) # output bias

def lossFun(inputs, targets, hprev):

inputs,targets are both list of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state

71

https://gist.github.com/karpathy/d4dee566867f8291f086

Why Vanishing and Exploding Gradient of Vanilla RNN Happens
he = fw (hi1,)
|
hy = tanh(Wpphe_y + Wep,)
Yt = Whyht

Suppose we are using a many-to-many RNN for sequence labeling
E=Lh) E=>,&
9 d&, oh, Ohy
00 Zlékét(aht dh, 00)

oh, oh, .
a_h:. = Ili>isk TV ;i1 Wi diag(tanh' (Wi hi—1 + Wepa;))

+
8hk is the immediate partial derivative of hidden activity vector with respect to
06 network weights

Pascanu et al., On the difficulty of training recurrent neural networks. ICML 2013 2

Vanilla RNN Gradient Flow

Al

W_’OZ tanh
h.—1T—> itjck “*
0+—
—
X

1

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

Al

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

1l

W_’OZ tanh
[itjck TL
—

X2

W-’OZ tanh

“* h, T— itaTcl:_

AN
w
4|
—
A

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient norm Clipping

Algorithm 1 Pseudo-code for norm clipping

5« O
8¢ 59

0
if ||g|| > threshold then
4 threshold g
€< Tl 8
end if

Design a better architecture

73

Long Short-Term Memory

. = O (met + Whihi—1 + Weice—1 + bi)

o (Wesxe + Whhi—1 + Wepei—1 + by)
= fici—1 + i tanh (Wyexy + Whehi—1 + be)
— 0 (Wmoxt + Whohit—1 + Weoer + bo)

= o4 tanh(c;)

Picture Credit: https://www.cs.toronto.edu/~graves/asru 2013.pdf

74

https://www.cs.toronto.edu/~graves/asru_2013.pdf

Long Short-Term Memory

A £/
Cet + —o D y & iy =0 (Wyixe + Whihi—1 + Weice—1 + b;)
; !_%_\FqT fo=0 Waszs + Whihi1 + Wepcr1 + by)
N rc:;:_:anh . ct = fici—1 + i tanh (Wyexy + Whehi—1 + be)
1 Cr o 0 =0 (Waott + Whohi—1 + Weocs + b))

J@ h; = o tanh(c;)

] o0 — > <

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Picture Credit: https://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/ 75

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

-
C.- S mmee———C et C- e mmee————C
0 t T t Z t 3
f f f
i i i
W— g} ®© tanh W— g} ® tanh W— g} ® tanh
— > stack 0 é_’ h —— — > stack o é_’ h — — T > stack 0 é_’ h ——
\ 1|‘ t/ T J \ T t /
-
In between:
| ilnln Highway Networks
Similar to ResNet! | L g="T(z,Wr)
B ‘ * §§g y=gOH@E,Wy)+(1-g) 0z
| Srivastava et al, “Highway Networks”,
_\ ICML DL Workshop 2015

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019 76

Bidirectional LSTM

Outputs ce Yp—a Yt Yt+1 - - -

v =H (W gae+ Wyg oo +by)
Backward Layer 4— e @ — —
h:;=H (Wmfﬁxt + W‘E‘E hiv1+ b%)
Forward Layer @ a —>

Inputs R | Tt Tigp1 - - -

— —
yt:W%)yht‘i—Wﬁyht‘*—by

Picture Credit: https://www.cs.toronto.edu/~graves/asru 2013.pdf

77

https://www.cs.toronto.edu/~graves/asru_2013.pdf

Peptide
Pos. 1:

Amino
Acid
Embedding

Peptide
Pos. 2:

Amino
Acid
Embedding

Bidirectional LSTM

— e e o o o o o o E E e o O e e e e O O O O Ew E E Ew Em Em Ey,

Peptide
Pos. 9:

Amino
Acid
Embedding

78

Deep LSTM

- Yt—1 Yt Yt+1 - - -

= H (Whn-1pn A 4+ Whnpnh? | + by

‘. Yt = WhNyhiv + by

- Tg—1 Tt T4l - - -

Picture Credit: https://www.cs.toronto.edu/~graves/asru 2013.pdf

79

https://www.cs.toronto.edu/~graves/asru_2013.pdf

Deep LSTM for Generating Complex Sequences

Generating text with characters or words as symbols
Generating handwriting with sequences of pen coordinates (x, y) and pen on/off
whiteboard as input

Outputs

Hidden Layers

Inputs

Alex Graves, Generating Sequences With Recurrent Neural Networks. 2015
https://arxiv.org/pdf/1308.0850.pdf

80

https://arxiv.org/pdf/1308.0850.pdf

neural network

encoder

Deep Encoder-Decoder Networks:
Sequence-to-Sequence (Seq2Seq) Models

neural network
decoder

X =d(z)

f SRl
[N S N o N N N o o
T T]

A B C <EOS> z

— x

s —>

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

loss = |[x-X|2= [[x-d(z) | = [|x-de()|P

Illustration of an autoencoder with its loss function.

81

Data Augmentation in Sequence-to-Sequence (Seq2Seq)
Models for Machine Translation

W

i
T T T

B <EOS>

<EOS>

f T
P

Y z

>» N

Y
Y
Y
Y
Y
Y
Y

s—> |—>x

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the [LSTM reads the|

[input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

Tl

P, yr |z,) = [[p@elv, s, -5 9e-1)

t=1
i = 0 Wiy + Whihi—1 + Weici—1 + by)

ft =0 (Weszs + Whphi—1 + Wepcr—1 + by)
representation v of the input sequence (z1, ..., zT) et = frer—1 + iy tanh (Woey + Whehe—1 + be)

ot = 0 (Waott + Whohe—1 + Weocy + b,)

ht = ot tanh(ct)

82

Summary of Topics Discussed

Activation Functions

Loss Functions

Training deep feedforward neural networks with backpropagation and
mini-batch SGD

Convolution and pooling operations in CNN

Network architectures such as AlexNet, VGG, ResNet
Applications of supervised pre-trained CNNs

Visualization of pre-trained CNN filters and receptive fields
Recurrent Neural Networks, Sequence-to-Sequence Models
Geoff Hinton, “Never stop coding.” Great discoveries are from
practice.

83

The End

Next lecture:

Deep Learning lll:
Deep Generative Models, VAE, and GAN

84

