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Personal Genomics 

& Data Science:

Using population-scale 
functional genomics 

to understand 
neuropsychiatic

disease 
& interpreting 

the data exhaust 
from this activity

Mark Gerstein
Yale

Slides freely downloadable from 
Lectures.GersteinLab.org

& “tweetable” (via @markgerstein). 
See last slide for more info.



Transcriptome = Gene Activity of All Genes in the Genome, 
usually quantified by RNA-seq

Genes (DNA)

RNA 
transcripts

Protein 
coding 
mRNA

Proteins

Non-coding 
regulatory 

RNAs

Regulation
Transcription

Translation
Gene Expression 
measured by RNA-seq

[ NATURE 459: 927; NAT. REV. GEN. 10: 57 ]   
Expression of genes is quantified by transcription: 
RNA-Seq measures mRNA transcript amounts



3
-L

ec
tu

re
s.

G
er

st
ei

nL
ab

.o
rg

ATACAAGCAAGTATAAGTTCGTATGCCGTCTT
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG
TACCGATCGAGTCGACTGTAAACGTAGGCATA
ATTCTGACTGGTGTCATGCTGATGTACTTAAA
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Fastq sequence files
~5-10 GB

[NAT. REV. 10: 57; PLOS CB 4:e1000158; PNAS 4:107: 5254 ]

Quantitative information from RNA-seq signal: 
average signals at exon level (RPKMs)

Reads => Signal

BAM files
~1-2-fold reduction

Index-building + Alignment to reference genome

BigWig files
~25-fold reduction

Conversion to signal track by overlapping reads

Gene/Transcript 
expression matrix
~20-fold reduction

Mapping 
to genes

RNA-Seq Overview
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Activity Patterns • RNA Seq. gives rise to activity patterns 
of genes & regions in the genome
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Some Core Science Qs Addressed by RNA-seq

• Gene activity as a function of:
- Developmental stage: basic patterns of co-active genes across 

development
- Cell-type & Tissue: relationship to specialized functions
- Evolutionary relationships: behavior preserved across a wide 

range of organisms; patterns in model organisms in relation to 
those in humans 

- Individual, across the human population 
- Disease phenotypes: disruption of patterns in disease

• Some overarching Qs: 
Are there core patterns of gene activity ?
How do they vary across individual ? 
Are they disrupted by disease? 
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Data Exhaust
• Creative use of data is key to data science!
• Data exhaust = exploitable byproducts of big 

data collection and analysis

metadata

infrastructure

Data exhaust

Data collection 
and analysis

Core scientific purposes

[photos: wikipedia/wikimedia]



Using population-scale functional genomics to understand neuropsychiatic disease 
& interpreting the data exhaust from this activity 

• [Core] PsychENCODE: Population-level 
analysis of functional genomics data related 
to neuropsychiatric disease
- Construction of an adult brain resource with 

1866 individuals + dev. time-course
- Using the changing proportions of cell types 

(via single-cell deconvolution) to account 
for expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive 
QTL resource (~2.5M eQTLs + cQTLs & 
fQTLs)

- Connecting QTLs, enhancer activity 
relationships & Hi-C into a
brain regulatory network & using this to link 
SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict disease from 
genotype & transcriptome. Using this to 
suggest specific pathways & genes, as 
targets.

• [Exhaust] Other uses for the resource
• Highlighting aging related genes + 

consistently comparing the brain to 
other organs

• [Exhaust] Genomic Privacy
- The Dilemma

• The genome as fundamental, 
inherited info that’s very private v. 
need for large-scale mining for 
med. research

• 2-sided nature of RNA-seq
presents tricky privacy issues

- eQTLs: Quantifying & removing 
variant info from expression levels with 
ICI & predictability. Instantiating a 
practical linking attack with noisy 
quasi-identifiers

- Signal Profiles: Manifest appreciable 
leakage from large & small deletions. 
Linking attacks possible but additional 
complication of SV discovery in 
addition to genotyping
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PsychENCODE
’18 rollout in Science 

11 papers in total. 
Major material in the 3 capstones:

Wang et al. (‘18), Li et al. (‘18), Gandal et al. ('18)

Single Cell 
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A core issue addressed by PsychENCODE: 
Using functional genomics to reveal molecular mechanisms 

between genotype and phenotype in brain disorders

Genotype

AGEBPDSCZ

Phenotype

Genes

Modules

pathways, 
circuits

Cell types

…

Regulatory 
elements

*h
ttp
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Disease Heritability* Molecular Mechanisms

Schizophrenia 81% (C4A)

Bipolar disorder 70% -

Alzheimer's disease 58 - 79% Apolipoprotein E (APOE), Tau

Hypertension 30% Renin–angiotensin–aldosterone

Heart disease 34-53% Atherosclerosis, VCAM-1

Stroke 32% Reactive oxygen species (ROS), 
Ischemia

Type-2 diabetes 26% Insulin resistance

Breast Cancer 25-56% BRCA, PTEN

Many psychiatric conditions are highly heritable
Schizophrenia: up to 80%

But we don’t understand basic molecular mechanisms underpinning this association 
(in contrast to many other diseases such as cancer & heart disease)

Thus, interested in developing predictive models of psychiatric traits which:
Use observations at intermediate (molecular levels) levels to inform latent structure
Use the predictive features of these “molecular endo phenotypes” to begin to suggest 
actors involved in mechanism
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Collecting 
functional 
genomic 
datasets 
for the 

adult brain 

from 
PsychENCODE, 

other large 
consortia & single 

cell studies

1866
Individuals
~3.7K bulk RNA-seq
~32K single-cells  
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Lake et al., 2018 data PEC adult data 
[Li et al. (‘18), Science. Wang et al. (‘18). Science]

Merging & Clustering Single 
Cell Data Sets

Single cell signatures, from:

• ~14K cells 
(Lake et al.,‘16 & ‘18)

• ~400 cells 
(Darmanis et al., PNAS, ‘15)

• ~18K cells (PsychENCODE)
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×
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2

1

3

-1

-3

-2

Single-cell 
deconvolution 
Step 1:

Supervised 
learning to 
estimate cell 
fractions

Individual and cross-population 
reconstruction accuracy via 
deconvolution

88%±4%

[Wang et al. (‘18) Science]
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Different neuronal & glial cell 
fractions across disorders

Excitatory to Inhibitory imbalance at 
neuronal subtype level for ASD*
* Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain 
Behav. 2003

Ex5 In6 Oligo

[Wang et al. (‘18) Science]
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Developmental Capstone Data Set 

[Li et al. (‘18) Science]

• 60 Individuals in total
• Ages from 5 PCW to 64 yrs.
• 16 brain regions for > 9 PCW 
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Different neuronal & glial cell 
fractions across ages

[Li et al. (‘18) Science]



Using population-scale functional genomics to understand neuropsychiatic disease 
& interpreting the data exhaust from this activity 

• [Core] PsychENCODE: Population-level 
analysis of functional genomics data related 
to neuropsychiatric disease
- Construction of an adult brain resource with 

1866 individuals + dev. time-course
- Using the changing proportions of cell types 

(via single-cell deconvolution) to account 
for expression variation across a population, 
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consistently comparing the brain to 
other organs

• [Exhaust] Genomic Privacy
- The Dilemma

• The genome as fundamental, 
inherited info that’s very private v. 
need for large-scale mining for 
med. research

• 2-sided nature of RNA-seq
presents tricky privacy issues

- eQTLs: Quantifying & removing 
variant info from expression levels with 
ICI & predictability. Instantiating a 
practical linking attack with noisy 
quasi-identifiers

- Signal Profiles: Manifest appreciable 
leakage from large & small deletions. 
Linking attacks possible but additional 
complication of SV discovery in 
addition to genotyping
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Characterize brain specific enhancers

[Wang et al. (‘18) Science]

Developing a Reference Set of ~79K PFC Enhancers 
& Studying Their Population Variation

Consistent with ENCODE, active 
enhancers are identified as open 
chromatin regions enriched in 
H3K27ac and depleted in H3K4me3  
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Characterize brain specific enhancers

[Wang et al. (‘18) Science]

Developing a Reference Set of ~79K PFC Enhancers 
& Studying Their Population Variation
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Gene expression (eQTL) Chromatin (cQTL)

Chromatin variation in the population
Quantitaive Trait Loci (QTLs) associated with variation
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[Wang et al. (‘18) Science]
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present in more than half of the individuals sur-
veyed. In a comparison of aggregated sets for
these three brain regions, the PFC was more
similar to the TC than the CB (~90% versus 34%
overlap in peaks). This difference is consistent
with previous reports and suggests potentially
different cell-type composition in the CB and the
cortex (33, 34).

We also examined howmany of the enhancers
in the reference brain are active (i.e., have en-
richedH3K27ac) in each of the individuals in our
cohort. As expected, not every reference enhancer
was active in each individual. On average, only
~70% ± 15% (~54,000) of the enhancers in the
reference brain were active in an individual in the
cohort, and a similar fraction of the reference

enhancerswas active inmore than half the cohort
(68%) (Fig. 3B). To estimate the total number of
enhancers in the PFC, we calculated the cumu-
lative number of active regions across the cohort
(fig. S25). This increased for the first 20 individ-
uals sampled but saturated at the 30th. Thus, we
hypothesize that pooling PFC enhancers from
~30 individuals is sufficient to cover nearly all

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 5 of 13

PsychENCODE all eGenes

PsychENCODE coding eGenes
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Fig. 4. QTLs in the adult brain. (A) The frequency of genes with at least
one eQTL (eGenes) is shown across different studies.The number of eGenes
increased as the sample size increased. PsychENCODE eGenes are close
to saturation for protein-coding genes. The estimated replication p1 values
for GTEx and CMC eQTLs versus PsychENCODE are shown (36). (B) The
similarity between PsychENCODE brain dorsolateral PFC (DLPFC) eQTLs
and GTEx eQTLs of other tissues are evaluated by p1 values and SNP-eGene
overlap rates. Both p1 values and SNP-eGene overlap rates are higher for
brain DLPFC than for the other tissues. (C) An example of an H3K27ac
signal across individuals in a representative genomic region, showing largely
congruent identification of regions of open chromatin.The region within the
dashed rectangle represents a cQTL; the signal magnitudes for individuals
with a G/G or G/Tgenotype were lower than those for individuals with a
T/Tgenotype. chr1, chromosome 1; rs, reference SNP. (D) An example of the
mechanism by which an fQTL may affect phenotype.This fQTL overlaps with
an eQTL for FZD9, a gene located in the 7q11.23 region that is deleted in
Williams syndrome.The fQTLmay affect the fraction of Ex3 by regulating FZD9

expression. Only Ex3 constitutes a statistically significant fQTLwith this SNP
(as designated by the asterisk). ref, reference; alt, alternate. (E) The
enrichment of QTLs in different genomic annotations is shown. Pink circles
indicate highly significant enrichment (P < 1 × 10−25 and OR > 2.5). OR,
odds ratio; TFBS,TF binding site; UTR, untranslated region. (F) Numbers
of identified QTL-associated elements (eGenes, enhancers, and cell types) and
QTL SNPs are shown in the bottom left table. Asterisks indicate that, for
cQTLs, we show only the number of top SNPs for each enhancer. Overlaps of
all QTL SNPs are shown in heatmaps (square rows).The linked circles show
the overlap of QTL types.The intersections of other QTLs with eQTLs are
evaluated by using p1 values in the orange bar plot.The greatest intersection
is between cQTLs and eQTLs. An example is displayed on the right: the
intersection of eQTL SNPs (for the MTOR gene) and cQTL SNPs (for the
H3K27ac signal on an enhancer ~50 kbupstreamof the gene). Hi-C interactions
(bottom) indicate that the enhancer interacts with the promoter of MTOR,
suggesting that the cQTLSNPs potentially mediate the expression modulation
manifest by the eQTL SNPs.

RESEARCH | RESEARCH ARTICLE | PSYCHENCODE

on February 22, 2019
 

http://science.sciencem
ag.org/
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AàT CàG TàC

Cell fraction QTLs (fQTLs)

[Wang et al. (‘18) Science]
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Larger brain eQTL sets than previous studies, 
but strong overlap with them

[Wang et al. (‘18) Science]

2,542,908 eQTLs (FDR< 0.05)
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multi-QTLs from overlapping 
different types of QTLs: 

cQTL, fQTL, eQTL & isoQTL

eQTLs for mTOR 
mediated by 

cQTLs

1391 SNPs (multi-QTLs) 
in at least three types 
among eQTLs, isoQTLs, 
cQTLs, fQTLs

eQTLs and cQTLs
significantly 

overlap

eQTL
isoQTL
cQTL
fQTL

[Wang et al. (‘18) Science]
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Brain eQTLs and enhancers enriched with GWAS 
SNPs for brain disorders

Enrichment

Wang, et al., Science, 2018



Using population-scale functional genomics to understand neuropsychiatic disease 
& interpreting the data exhaust from this activity 

• [Core] PsychENCODE: Population-level 
analysis of functional genomics data related 
to neuropsychiatric disease
- Construction of an adult brain resource with 

1866 individuals + dev. time-course
- Using the changing proportions of cell types 

(via single-cell deconvolution) to account 
for expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive 
QTL resource (~2.5M eQTLs + cQTLs & 
fQTLs)

- Connecting QTLs, enhancer activity 
relationships & Hi-C into a
brain regulatory network & using this to link 
SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict disease from 
genotype & transcriptome. Using this to 
suggest specific pathways & genes, as 
targets.

• [Exhaust] Other uses for the resource
• Highlighting aging related genes + 

consistently comparing the brain to 
other organs

• [Exhaust] Genomic Privacy
- The Dilemma

• The genome as fundamental, 
inherited info that’s very private v. 
need for large-scale mining for 
med. research

• 2-sided nature of RNA-seq
presents tricky privacy issues

- eQTLs: Quantifying & removing 
variant info from expression levels with 
ICI & predictability. Instantiating a 
practical linking attack with noisy 
quasi-identifiers

- Signal Profiles: Manifest appreciable 
leakage from large & small deletions. 
Linking attacks possible but additional 
complication of SV discovery in 
addition to genotyping
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Hi-C

Enhancers
Topologically Associating 

Domain (TAD)

Gene

Potential Enhancer-Promoter 
(E-P) interaction in TAD

Transcription Factor Binding Sites (TFBSs)

TF
Enhancer
Target gene

TFBS on promoter

TFBS on enhancer

!*= "#$%&'( ) − +! , + " ! , + . ! /0
TF expression (X) to predict target gene expression (Y) 
using Elastic net regression

C*i
Expression activity relationship

QTLs

C*j

C*k

Gene regulatory 
network inference 
from Hi-C, QTLs & 

Activity Correlations

[Wang et al. (‘18) Science]
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Imputed gene regulatory network for 
the human brain
Imputed gene regulatory network linking TFs, enhancers and genes plus 
QTLs

subnetworks targeting single cell marker genes
[Wang et al. (‘18) Science]
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Linking GWAS SNPs 
to disease genes using 
the regulatory network

142

321 
high-confident 

SCZ genesActivity

[Wang et al. (‘18) Science]
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Genes associated with SCZ enriched in specific neuronal cell types & 
co-expression modules, active prenatally

Mingfeng Li et al. 
Science 2018

Wang, et al., 
Science, 2018

Gene co-
expression 
network

ME37



Using population-scale functional genomics to understand neuropsychiatic disease 
& interpreting the data exhaust from this activity 

• [Core] PsychENCODE: Population-level 
analysis of functional genomics data related 
to neuropsychiatric disease
- Construction of an adult brain resource with 

1866 individuals + dev. time-course
- Using the changing proportions of cell types 

(via single-cell deconvolution) to account 
for expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive 
QTL resource (~2.5M eQTLs + cQTLs & 
fQTLs)

- Connecting QTLs, enhancer activity 
relationships & Hi-C into a
brain regulatory network & using this to link 
SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict disease from 
genotype & transcriptome. Using this to 
suggest specific pathways & genes, as 
targets.

• [Exhaust] Other uses for the resource
• Highlighting aging related genes + 

consistently comparing the brain to 
other organs

• [Exhaust] Genomic Privacy
- The Dilemma

• The genome as fundamental, 
inherited info that’s very private v. 
need for large-scale mining for 
med. research

• 2-sided nature of RNA-seq
presents tricky privacy issues

- eQTLs: Quantifying & removing 
variant info from expression levels with 
ICI & predictability. Instantiating a 
practical linking attack with noisy 
quasi-identifiers

- Signal Profiles: Manifest appreciable 
leakage from large & small deletions. 
Linking attacks possible but additional 
complication of SV discovery in 
addition to genotyping
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Deep Structured Phenotype Network 
(DSPN) 

Boltzmann machine 

y: phenotypes

h: hidden units (e.g., circuits)

x: intermediate phenotypes 
(e.g., genes, enhancers)

z: genotypes (e.g., SNPs)

W: weights 
(e.g., regulatory network)

Variants

LR cRBM cDBM

L0
(conditioning 

units)

AGEBPDSCZ
Traits

Genes

Modules

Higher-order 
groupings

A

Embedded 
GRN layers

DSPN

Full connectivity

Sparse connectivity

Lateral connectivity

L2b

L2a

L1a/b

L1c/d

B

Layer

Sublayer

Sub-sublayer

Boundaries:

Regulatory 
elements

Cells

…

Edges:

GRN linkages

QTL linkages

L1
(visible or 

imputed units)

L2
(hidden units)

L3
(output units)

…

Nodes:

Visible

Visible or imputed 

Hidden

Cell 
Fractions

Co-expression 
modules

SNPs

Enhancers Genes

eQTL

fQTL

cQTL
Gene 

regulatory 
network

𝑝 𝐱, 𝐲, 𝐡|𝐳 ∝ exp −𝐸 𝐱, 𝐲, 𝐡|𝐳

𝐸 𝐱, 𝐲, 𝐡|𝐳 = −𝐳/𝐖𝟏𝐱 −𝐱/ 𝐖𝟐𝐱 − 𝐱/𝐖𝟑𝐡 − 𝐡/𝐖𝟒𝐡 − 𝐡/𝐖𝟓𝐲 − 𝑩𝒊𝒂𝒔

Gene 
regulatory 
network 
builds 
skeleton

Energy 
model:

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Accuracy = chance to correctly predict disease/health

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

X 6.0

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 2.5

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 3.1

[Wang et al. (‘18) Science]
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Start with a fully connected trained network

Actual network size:
5024/400/100/1 nodes
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Start with a fully connected trained network
• Sparsify network using edges with largest absolute weights (+/-)

Actual network size:
5024/400/100/1 nodes
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Start with a fully connected trained network
• Sparsify network using edges with largest absolute weights (+/-)
• Extract ‘best positive paths’ to each prioritized module                 

(e.g. a-a1-a2-SCZ) by summing weights and multiplying signs

Actual network size:
5024/400/100/1 nodes
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DSPN discovers enriched pathways 
and linkages to genetic variation

[Wang et al. (‘18) Science]

Cross-disorder MOD/HOG 
enrichment ranking

SCZ

BPD ASD



Using population-scale functional genomics to understand neuropsychiatic disease 
& interpreting the data exhaust from this activity 

• [Core] PsychENCODE: Population-level 
analysis of functional genomics data related 
to neuropsychiatric disease
- Construction of an adult brain resource with 

1866 individuals + dev. time-course
- Using the changing proportions of cell types 

(via single-cell deconvolution) to account 
for expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive 
QTL resource (~2.5M eQTLs + cQTLs & 
fQTLs)

- Connecting QTLs, enhancer activity 
relationships & Hi-C into a
brain regulatory network & using this to link 
SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict disease from 
genotype & transcriptome. Using this to 
suggest specific pathways & genes, as 
targets.

• [Exhaust] Other uses for the resource
• Highlighting aging related genes + 

consistently comparing the brain to 
other organs

• [Exhaust] Genomic Privacy
- The Dilemma

• The genome as fundamental, 
inherited info that’s very private v. 
need for large-scale mining for 
med. research

• 2-sided nature of RNA-seq
presents tricky privacy issues

- eQTLs: Quantifying & removing 
variant info from expression levels with 
ICI & predictability. Instantiating a 
practical linking attack with noisy 
quasi-identifiers

- Signal Profiles: Manifest appreciable 
leakage from large & small deletions. 
Linking attacks possible but additional 
complication of SV discovery in 
addition to genotyping



Phase	1	PsychENCODE capstone	resource:	
Layers	of	distributed	information

Material in the 3 capstones:

AC - Wang et al. ('18)
DC - Li et al. ('18)
NC - Gandal et al. ('18)

40

Resource.psychencode.org
Development.psychencode.org
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Cross tissue 
variation in 

Chromatin & 
Expression

Placing the 
Brain

in context of all other 
Body Tissues

Transcriptome diversity increases in 

the non-coding portion of the brain genome 
while decreases in other tissues

Ex
pr

es
si

on
C

hr
om

at
in

[Wang et al. (‘18) Science]

H
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NRGN has variable expression over age 
and is in Synaptic vesicle cycle pathway 

is enriched in SCZ, BPD, ASD

0 20 40 60 80

0
2

4
0.

45
2

0.
46

Age (years)
0

0.
1

0.
05

0.
15

Ex3 N
euron

M
ethylation

Exp.
NRGN

NGRN is a gene 
associated with 
the Synaptic 
vesicle pathway 
and NGRN 
expression and
methylation is
correlated with 
Age

0 20 40 60 80



Using population-scale functional genomics to understand neuropsychiatic disease 
& interpreting the data exhaust from this activity 

• [Core] PsychENCODE: Population-level 
analysis of functional genomics data related 
to neuropsychiatric disease
- Construction of an adult brain resource with 

1866 individuals + dev. time-course
- Using the changing proportions of cell types 

(via single-cell deconvolution) to account 
for expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive 
QTL resource (~2.5M eQTLs + cQTLs & 
fQTLs)

- Connecting QTLs, enhancer activity 
relationships & Hi-C into a
brain regulatory network & using this to link 
SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict disease from 
genotype & transcriptome. Using this to 
suggest specific pathways & genes, as 
targets.

• [Exhaust] Other uses for the resource
• Highlighting aging related genes + 

consistently comparing the brain to 
other organs

• [Exhaust] Genomic Privacy
- The Dilemma

• The genome as fundamental, 
inherited info that’s very private v. 
need for large-scale mining for 
med. research

• 2-sided nature of RNA-seq
presents tricky privacy issues

- eQTLs: Quantifying & removing 
variant info from expression levels with 
ICI & predictability. Instantiating a 
practical linking attack with noisy 
quasi-identifiers

- Signal Profiles: Manifest appreciable 
leakage from large & small deletions. 
Linking attacks possible but additional 
complication of SV discovery in 
addition to genotyping
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2-sided nature of functional 
genomics data: Analysis can be 

very General/Public
or Individual/Private

• General quantifications related to overall aspects 
of a condition – ie gene activity as a function of:
- Developmental stage, Evolutionary relationships, Cell-type, Disease

• Above are not tied to an individual’s genotype. However, data is 
derived from individuals & tagged with their genotypes

• (Note, a few calculations aim to use explicitly genotype to derive general 
relations related to sequence variation & gene expression - eg allelic activity)
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Privacy: Does Genomics has 
similar "Big Data" Dilemma as in 

the Rest of Society?

• We confront privacy risks every day we access 
the internet (e.g., social media, e-commerce).

• Sharing & "peer-production" is central to 
success of many new ventures, with analogous 
risks to genomics
- EG web search: Large-scale mining 

essential

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct), D Greenbaum & M Gerstein (’08). Am J. Bioethics; D 
Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08; Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; 
Photos from NY Times, it.wisc.edu]

Genetic Exceptionalism : 
The Genome is very fundamental data, potentially very 
revealing about one’s identity & characteristics

Personal Genomic info. essentially meaningless currently 
but will it be in 20 yrs? 50 yrs?

Genomic sequence very revealing about one’s children. Is 
true consent possible?

Once put on the web it can’t be taken back 
Ethically challenged history of genetics 

Ownership of the data & what consent means (Hela)
Could your genetic data give rise to a product line? 
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The Dilemma

• Sharing helps speed research
- Large-scale mining of this information is important 

for medical research
- Statistical power
- Privacy is cumbersome, particularly for big data

[Economist, 15 Aug ‘15]

The Other Side of the Coin 
for Genomics: Why we should share

[Yale Law Roundtable (‘10). Comp. in Sci. & Eng. 12:8; D Greenbaum & M Gerstein (‘09). Am. J. Bioethics; D 
Greenbaum & M Gerstein (‘10). SF Chronicle, May 2, Page E-4; Greenbaum et al. PLOS CB (‘11)]

• The individual (harmed?) v the 
collective (benefits)

- But do sick patients care 
about their privacy?

• How to balance risks v rewards 
– Quantification
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Current Social & Technical Solutions: 
The quandary where are now

• Closed Data Approach
- Consents
- “Protected” distribution via dbGAP
- Local computes on secure computer

• Issues with Closed Data
- Non-uniformity of consents & paperwork

• Different, confusing int’l norms
- Computer security is burdensome
- Many schemes get “hacked” . 
- Tricky aspects of high-dimensional 

data (leakage & ease of creating quasi-
identifiers)

• Open Data
- Genomic "test pilots” (ala PGP)?

• Sports stars & celebrities?
- Some public data & data donation is helpful but is this a realistic solution for an 

unbiased sample of ~1M

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist; Photo: futurism.com]
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Strawman Hybrid Social & Tech Proposed Solution?

• Fundamentally, researchers 
have to keep genetic secrets.
- Need for an (international) 

legal framework
- Genetic Licensure & training 

for individuals 
(similar to medical license, 
drivers license)

• Technology to make things 
easier
- Cloud computing & enclaves 

(eg solution of Genomics 
England)

• Technological barriers 
shouldn't create a social 
incentive for “hacking”

• Quantifying Leakage & 
allowing a small amounts of it 

• Careful separation & coupling 
of private & public data 
- Lightweight, freely accessible 

secondary datasets coupled 
to underlying variants 

- Selection of stub & "test pilot" 
datasets for benchmarking

- Develop programs on public 
stubs on your laptop, then move 
the program to the cloud for 
private production run

[D Greenbaum, M Gerstein (‘11). Am J Bioeth 11:39. Greenbaum & Gerstein, The Scientist ('13)]
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overlap
profile

Si
gn

al

in
cr

ea
si

ng
 g

en
e 

ex
pr

es
si

on
 le

ve
l

ge
ne

s

samples

Leakage 
 Source

Raw reads

Modified reads
Q = {indels}

Signal profiles

Gene expression
quantification

Modified reads
Q = {mismatches}

Leaking
Variants

Exonic 
variants
Exonic
SNVs

Exonic 
indels

Exonic 
deletions

eQTLs

# of potential
variants

2,682,417

48,019

3,175

Average leakage
per variant (bits)

0.10 ± 0.28

0.29 ± 0.45

1.19 ± 0.36

Maximum leakage
per variant (bits)

9.88 ± 2.12

7.97 ± 2.42

4.00 ± 1.92

# of accessible
variants

231,031

1,067

158

Total leakage
(bits)

24,689

298

188

2,607,969

51,408 0.33 ± 0.47

0.09 ± 0.27 9.95 ± 2.02

7.64 ± 2.42 15,862

246,893

207,92

5234

[Gursoy et al, Bioarvix]

NA12878 as case 
study - 1000 
genomes variants 
are used as gold 
standard

Functional genomics data comes with a great deal of sequencing; 
We can quantify amount of leakage at every step of the data 

summarization process. 
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• How much information, for example, do RNA-
Seq reads (or ChIP-Seq) reads contain? Does 
that information enough to identify 
individuals?

[Gursoy et al, Bioarvix]

• It might seem like we don’t infer much 
information from single ChIP-Seq and RNA-
Seq experiments compared to WGS

• However putting 10 different 
ChIP-Seq experiments and 
RNA-Seq together with 
imputation provides a great 
deal of information about the 
individual

WGS All ChIP-Seq+RNA-Seq
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Light-weight formats to Hide Most 
of the Read Data (Signal Tracks)

• Some lightweight format clearly separate public & private info., 
aiding exchange

• Files become much smaller. Similar to CRAM
• Distinction between formats to compute on and those to archive 

with – become sharper with big data

Mapping coordinates 
without variants (MRF)

Reads 
(linked via ID, 
10X larger than 
mapping coord.)[Bioinformatics 27: 281]



Using population-scale functional genomics to understand neuropsychiatic disease 
& interpreting the data exhaust from this activity 

• [Core] PsychENCODE: Population-level 
analysis of functional genomics data related 
to neuropsychiatric disease
- Construction of an adult brain resource with 

1866 individuals + dev. time-course
- Using the changing proportions of cell types 

(via single-cell deconvolution) to account 
for expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive 
QTL resource (~2.5M eQTLs + cQTLs & 
fQTLs)

- Connecting QTLs, enhancer activity 
relationships & Hi-C into a
brain regulatory network & using this to link 
SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict disease from 
genotype & transcriptome. Using this to 
suggest specific pathways & genes, as 
targets.

• [Exhaust] Other uses for the resource
• Highlighting aging related genes + 

consistently comparing the brain to 
other organs

• [Exhaust] Genomic Privacy
- The Dilemma

• The genome as fundamental, 
inherited info that’s very private v. 
need for large-scale mining for 
med. research

• 2-sided nature of RNA-seq
presents tricky privacy issues

- eQTLs: Quantifying & removing 
variant info from expression levels with 
ICI & predictability. Instantiating a 
practical linking attack with noisy 
quasi-identifiers

- Signal Profiles: Manifest appreciable 
leakage from large & small deletions. 
Linking attacks possible but additional 
complication of SV discovery in 
addition to genotyping
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Representative Functional Genomics, Genotype, 
eQTL Datasets

• Genotypes are available from the 1000 Genomes 
Project

• mRNA sequencing for 462 individuals from gEUVADIS
and ENCODE
-Publicly available quantification for protein coding 

genes
• Functional genomics data (ChIP-Seq, RNA-Seq, Hi-C) 

available from ENCODE
• Approximately 3,000 cis-eQTL (FDR<0.05)
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Information Content and Predictability

[Harmanci et al. Nat. Meth.  2016]

• Naive measure of information 
(no LD, distant correlations, 
pop. struc., &c)

• Higher frequency: Lower ICI
• Additive for multiple variants

• Condition specific entropy
• Higher cond. entropy: Lower 

predictability
• Additive for multiple eQTLs
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Genotype 

Predictability

[Harmanciet al. Nat. Meth. (‘16]
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Linking Attack Scenario

[Harmanciet al. Nat. Meth. (in revision)]
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases

Anonymized	Netflix	Prize	Training	Dataset	
made	available	to	contestants
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases

• IMDB users are public

• NetFLIX and IMdB moves are public
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases
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Linking Attack Scenario

[Harmanciet al. Nat. Meth. (in revision)]
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Success in Linking Attack 
with Extremity based Genotype Prediction

200 individuals eQTL Discovery 
200 individuals in Linking AttackHigh

Sensitivity

Low
Sensitivity

High Number
Of eQTLs

Low Number
Of eQTLs

[Harmanci et al. Nat. Meth. (16)]
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Success in Linking Attack 
with Extremity based Genotype Prediction

200 individuals eQTL Discovery 
200 individuals in Linking Attack

200 individuals eQTL Discovery 
100,200 individuals in Linking Attack

[Harmanci et al. Nat. Meth. (16)]



Using population-scale functional genomics to understand neuropsychiatic disease 
& interpreting the data exhaust from this activity 

• [Core] PsychENCODE: Population-level 
analysis of functional genomics data related 
to neuropsychiatric disease
- Construction of an adult brain resource with 

1866 individuals + dev. time-course
- Using the changing proportions of cell types 

(via single-cell deconvolution) to account 
for expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive 
QTL resource (~2.5M eQTLs + cQTLs & 
fQTLs)

- Connecting QTLs, enhancer activity 
relationships & Hi-C into a
brain regulatory network & using this to link 
SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict disease from 
genotype & transcriptome. Using this to 
suggest specific pathways & genes, as 
targets.

• [Exhaust] Other uses for the resource
• Highlighting aging related genes + 

consistently comparing the brain to 
other organs

• [Exhaust] Genomic Privacy
- The Dilemma

• The genome as fundamental, 
inherited info that’s very private v. 
need for large-scale mining for 
med. research

• 2-sided nature of RNA-seq
presents tricky privacy issues

- eQTLs: Quantifying & removing 
variant info from expression levels with 
ICI & predictability. Instantiating a 
practical linking attack with noisy 
quasi-identifiers

- Signal Profiles: Manifest appreciable 
leakage from large & small deletions. 
Linking attacks possible but additional 
complication of SV discovery in 
addition to genotyping
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ChIP-Seq
Signals

Large Deletion Genomic 
Coordinate

RNA-Seq
Signal

Small Deletion

A		C			G		T			A			C		G

Genomic 
Coordinate

[Harmanci & Gerstein, Nat. Comm. (‘18)]

Detection & Genotyping of small & large 
SV deletions from signal profiles

RNA-seq also shows large deletions
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[Harmanci & Gerstein, Nat. Comm. (‘18)]

Example of Small Deletion Evident in Signal Profile
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[Harmanci & Gerstein, Nat. Comm. (‘18)]

Example of Large Deletion Evident in Signal Profile
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a)Before Anonymization b) After Anonymization

[Harmanci & Gerstein, Nat. Comm. (‘18)]

Information Leakage from SV Deletions

Simple anonymization procedure (filling in deletion by value at endpoints) has dramatic effect
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Another type of Linking Attack: 
Linking based on SV Genotyping

Comparison of SV 
Panels and 
Genotype 
Matching

SV-bSV-1 SV-3 SV-N⋮

Structural Variants Genotype 
Dataset 

(Stolen/Legally Obtained)

⋮

Patient 
Name

⋮

SV-bSV-1 SV-3 SV-N⋮
⋮

⋮
⋮

⋮ ⋮⋮⋮

0 1 2 0

2 0 2 1

1 2 2 2

⋮0 1 1 0

GIND-1

GIND-2

GIND-K

GIND-3

SV-2SV-1 SV-3 SV-N⋮

SV Panel for Signal Profiles Structural Variants Panel
(Stolen/Legally Obtained)

Predicted SV 
Genotype Dataset

⋮

SV-2SV-1 SV-3 SV-N⋮
⋮

⋮
⋮

⋮ ⋮⋮⋮

0 0 2 2

2 0 X 0

0 X X 0

SIND-1

SIND-2

SIND-n

⋮ ⋮

HIV Status

⋮

Genotype in " / Genotype in "#
SV-3SV-1 SV-N⋮

⋮
⋮

⋮
⋮ ⋮⋮⋮

0/0 1/0 0/2

0/2 1/0 0/0

0/0 1/X 0/0

⋮ ⋮

HIV Status

SIND-1

SIND-2

SIND-n

GIND-2

GIND-1

GIND-3

("#)
(")

(&')(&()

0 / 2

SV-N

Genotype of SV-N in
SV Genotype
Dataset (")

Genotype of SV-N in
Predicted Genotype

Dataset ("#)

Anonymized
Sample ID

Anonymized
Sample ID

Patient 
Name

[Harmanci & Gerstein, Nat. Comm. (‘18)]
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Another type of Linking Attack: 
First Doing SV Genotyping

Si
gn
al

⋮⋮

Genomewide Signal ProfilesAnonymized
Sample ID

⋮

HIV Status

Genomic	Coordinate

Genomewide Signal Profile Dataset (Public)

SV
Discovery
(Optional)

SIND-1

SIND-2

SIND-n

SV-2SV-1 SV-3 SV-N⋮

Genomic Coordinate
Discovered/Supplied 

SV Panel for Signal Profiles

SV
Genotyping

Predicted SV Genotype Dataset

⋮

SV Genotypes
SV-2SV-1 SV-3 SV-N⋮

⋮
⋮

⋮

⋮ ⋮⋮⋮

0 0 2 2

2 0 X 0

0 X X 0

SIND-1

SIND-2

SIND-n

⋮ ⋮

HIV Status

(#$)

(&')

(()

Supplied 
SV Panel
(Optional)

2

1

1

2
or

3

Anonymized
Sample ID

[Harmanci & Gerstein, Nat. Comm. (‘18)]



7
0

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

c) Genotyping
(1kG MAF>0.01) d) Discovery + Genotyping

Sorted in Decreasing 
Predictability

Sorted in Decreasing 
Predictability

Linking Attack Based on SV Deletions in 
gEUVADIS Dataset 

[Harmanci & Gerstein, Nat. Comm. (‘18)]



Using population-scale functional genomics to understand neuropsychiatic disease 
& interpreting the data exhaust from this activity 

• [Core] PsychENCODE: Population-level 
analysis of functional genomics data related 
to neuropsychiatric disease
- Construction of an adult brain resource with 

1866 individuals + dev. time-course
- Using the changing proportions of cell types 

(via single-cell deconvolution) to account 
for expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive 
QTL resource (~2.5M eQTLs + cQTLs & 
fQTLs)

- Connecting QTLs, enhancer activity 
relationships & Hi-C into a
brain regulatory network & using this to link 
SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict disease from 
genotype & transcriptome. Using this to 
suggest specific pathways & genes, as 
targets.

• [Exhaust] Other uses for the resource
• Highlighting aging related genes + 

consistently comparing the brain to 
other organs

• [Exhaust] Genomic Privacy
- The Dilemma

• The genome as fundamental, 
inherited info that’s very private v. 
need for large-scale mining for 
med. research

• 2-sided nature of RNA-seq
presents tricky privacy issues

- eQTLs: Quantifying & removing 
variant info from expression levels with 
ICI & predictability. Instantiating a 
practical linking attack with noisy 
quasi-identifiers

- Signal Profiles: Manifest appreciable 
leakage from large & small deletions. 
Linking attacks possible but additional 
complication of SV discovery in 
addition to genotyping
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PsychENCODE
Acknowledgment

• Geetha Senthil
• Lora Bingaman
• David Panchision
• Alexander Arguello
• Thomas Lehner

The PsychENCODE Consortium: Allison E Ashley-Koch, Duke University; Gregory E Crawford, Duke University; Melanie E Garrett, Duke University; Lingyun Song, Duke University; Alexias Safi, Duke University; 
Graham D Johnson, Duke University; Gregory A Wray, Duke University; Timothy E Reddy, Duke University; Fernando S Goes, Johns Hopkins University; Peter Zandi, Johns Hopkins University; Julien Bryois, Karolinska Institutet; Andrew E 
Jaffe, Lieber Institute for Brain Development; Amanda J Price, Lieber Institute for Brain Development; Nikolay A Ivanov, Lieber Institute for Brain Development; Leonardo Collado-Torres, Lieber Institute for Brain Development; Thomas M 
Hyde, Lieber Institute for Brain Development; Emily E Burke, Lieber Institute for Brain Development; Joel E Kleiman, Lieber Institute for Brain Development; Ran Tao, Lieber Institute for Brain Development; Joo Heon Shin, Lieber Institute for 
Brain Development; Schahram Akbarian, Icahn School of Medicine at Mount Sinai; Kiran Girdhar, Icahn School of Medicine at Mount Sinai; Yan Jiang, Icahn School of Medicine at Mount Sinai; Marija Kundakovic, Icahn School of Medicine at 
Mount Sinai; Leanne Brown, Icahn School of Medicine at Mount Sinai; Bibi S Kassim, Icahn School of Medicine at Mount Sinai; Royce B Park, Icahn School of Medicine at Mount Sinai; Jennifer R Wiseman, Icahn School of Medicine at Mount 
Sinai; Elizabeth Zharovsky, Icahn School of Medicine at Mount Sinai; Rivka Jacobov, Icahn School of Medicine at Mount Sinai; Olivia Devillers, Icahn School of Medicine at Mount Sinai; Elie Flatow, Icahn School of Medicine at Mount Sinai; 
Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn School of Medicine 
at Mount Sinai and James J Peters VA Medical Center; Chang-Gyu Hahn, University of Pennsylvania; Alexander W Charney, Mount Sinai; Stella Dracheva, Mount Sinai; Alexey Kozlenkov, Mount Sinai; Judson Belmont, Icahn School of 
Medicine at Mount Sinai; Diane DelValle, Icahn School of Medicine at Mount Sinai; Nancy Francoeur, Icahn School of Medicine at Mount Sinai; Evi Hadjimichael, Icahn School of Medicine at Mount Sinai; Dalila Pinto, Icahn School of Medicine at 
Mount Sinai; Harm van Bakel, Icahn School of Medicine at Mount Sinai; Panos Roussos, Mount Sinai; John F Fullard, Mount Sinai; Jaroslav Bendl, Mount Sinai; Mads E Hauberg, Mount Sinai; Lara M Mangravite, Sage Bionetworks; Mette A 
Peters, Sage Bionetworks; Yooree Chae, Sage Bionetworks; Junmin Peng, St. Jude Children's Hospital; Mingming Niu, St. Jude Children's Hospital; Xusheng Wang, St. Jude Children's Hospital; Maree J Webster, Stanley Medical Research 
Institute; Thomas G Beach, Banner Sun Health Research Institute; Chao Chen, Central South University; Yi Jiang, Central South University; Rujia Dai, Central South University; Annie W Shieh, SUNY Upstate Medical University; Chunyu Liu, 
SUNY Upstate Medical University; Kay S. Grennan, SUNY Upstate Medical University; Yan Xia, SUNY Upstate Medical University/Central South University; Ramu Vadukapuram, SUNY Upstate Medical University; Yongjun Wang, Central South 
University; Dominic Fitzgerald, The University of Chicago; Lijun Cheng, The University of Chicago; Miguel Brown, The University of Chicago; Mimi Brown, The University of Chicago; Tonya Brunetti, The University of Chicago; Thomas 
Goodman, The University of Chicago; Majd Alsayed, The University of Chicago; Michael J Gandal, University of California, Los Angeles; Daniel H Geschwind, University of California, Los Angeles; Hyejung Won, University of California, Los 
Angeles; Damon Polioudakis, University of California, Los Angeles; Brie Wamsley, University of California, Los Angeles; Jiani Yin, University of California, Los Angeles; Tarik Hadzic, University of California, Los Angeles; Luis De La Torre 
Ubieta, UCLA; Vivek Swarup, University of California, Los Angeles; Stephan J Sanders, University of California, San Francisco; Matthew W State, University of California, San Francisco; Donna M Werling, University of California, San 
Francisco; Joon-Yong An, University of California, San Francisco; Brooke Sheppard, University of California, San Francisco; A Jeremy Willsey, University of California, San Francisco; Kevin P White, The University of Chicago; Mohana Ray, 
The University of Chicago; Gina Giase, SUNY Upstate Medical University; Amira Kefi, University of Illinois at Chicago; Eugenio Mattei, University of Massachusetts Medical School; Michael Purcaro, University of Massachusetts Medical 
School; Zhiping Weng, University of Massachusetts Medical School; Jill Moore, University of Massachusetts Medical School; Henry Pratt, University of Massachusetts Medical School; Jack Huey, University of Massachusetts Medical School; 
Tyler Borrman, University of Massachusetts Medical School; Patrick F Sullivan, University of North Carolina - Chapel Hill; Paola Giusti-Rodriguez, University of North Carolina - Chapel Hill; Yunjung Kim, University of North Carolina - Chapel 
Hill; Patrick Sullivan, University of North Carolina - Chapel Hill; Jin Szatkiewicz, University of North Carolina - Chapel Hill; Suhn Kyong Rhie, University of Southern California; Christoper Armoskus, University of Southern California; Adrian 
Camarena, University of Southern California; Peggy J Farnham, University of Southern California; Valeria N Spitsyna, University of Southern California; Heather Witt, University of Southern California; Shannon Schreiner, University of 
Southern California; Oleg V Evgrafov, SUNY Downstate Medical Center; James A Knowles, SUNY Downstate Medical Center; Mark Gerstein, Yale University; Shuang Liu, Yale University; Daifeng Wang, Stony Brook University; Fabio C. P. 
Navarro, Yale University; Jonathan Warrell, Yale University; Declan Clarke, Yale University; Prashant S. Emani, Yale University; Mengting Gu, Yale University; Xu Shi, Yale University; Min Xu, Yale University; Yucheng T. Yang, Yale University; 
Robert R. Kitchen, Yale University; Gamze Gürsoy, Yale University; Jing Zhang, Yale University; Becky C Carlyle, Yale University; Angus C Nairn, Yale University; Mingfeng Li, Yale University; Sirisha Pochareddy, Yale University; Nenad 
Sestan, Yale University; Mario Skarica, Yale University; Zhen Li, Yale University; Andre M.M. Sousa, Yale University; Gabriel Santpere, Yale University; Jinmyung Choi, Yale University; Ying Zhu, Yale University; Tianliuyun Gao, Yale 
University; Daniel J Miller, Yale University; Adriana Cherskov, Yale University; Mo Yang, Yale University; Anahita Amiri, Yale University; Gianfilippo Coppola, Yale University; Jessica Mariani, Yale University; Soraya Scuderi, Yale University; 
Anna Szekely, Yale University; Flora M Vaccarino, Yale University; Feinan Wu, Yale University; Sherman Weissman, Yale University; Tanmoy Roychowdhury, Mayo Clinic Rochester; Alexej Abyzov, Mayo Clinic Rochester;.

“Adult Capstone” Team – 1 of 3 capstones

Daifeng Wang, Shuang Liu, Jonathan Warrell, Hyejung
Won, Xu Shi, Fabio Navarro, Declan Clarke, Mengting Gu, 
Prashant Emani, Yucheng T. Yang, Min Xu, Michael Gandal, Shaoke Lou, Jing 
Zhang, Jonathan J. Park, Chengfei Yan, Suhn Kyong Rhie, Kasidet
Manakongtreecheep, Holly Zhou, Aparna Nathan, Mette Peters, Eugenio Mattei, 
Dominic Fitzgerald, Tonya Brunetti, Jill Moore, Yan Jiang, Kiran Girdhar, Gabriel 
Hoffman, Selim Kalayci, Zeynep Hulya Gumus, Greg Crawford,
PsychENCODE Consortium,
Panos Roussos, Schahram Akbarian, Andrew E. Jaffe, Kevin White, Zhiping Weng, 
Nenad Sestan, 
Daniel H. Geschwind, James A. Knowles
Dedicated to Pamela Sklar Resource.psychencode.org
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Developmental Capstone

• M Li, G Santpere, Y Imamura Kawasawa, 
OV Evgrafov, FO Gulden, S Pochareddy, 
SM Sunkin, Z Li, Y Shin,

Y Zhu, AMM Sousa, DM Werling, RR Kitchen, HJ Kang, M Pletikos, J Choi, S Muchnik, X Xu, 
D Wang, B Lorente-Galdos, S Liu, P Giusti-Rodriguez, H Won, CA de Leeuw, AF Pardinas, 
BrainSpan Consortium, PsychENCODE Consortium, 
PsychENCODE Developmental Subgroup, 
M Hu, F Jin, Y Li, MJ Owen, MC O'Donovan, JTR Walters, D Posthuma, MA Reimers, P 
Levitt, DR Weinberger, TM Hyde, JE Kleinman, DH Geschwind, MJ Hawrylycz, MW State, SJ 

Sanders, PF Sullivan,

ES Lein, JA Knowles, N Sestan

psychencode.org
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papers.gersteinlab.org/subject/privacy

PrivaSig.gersteinlab.org

PrivaSeq.gersteinlab.org

A Harmanci,

D Greenbaum, G Gürsoy

Hiring Postdocs. See 

JOBS.gersteinlab.org !
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Extra
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Info about content in this slide pack
• General PERMISSIONS
-This Presentation is copyright Mark Gerstein, 

Yale University, 2017. 
-Please read permissions statement at 

www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). 
- Paper references in the talk were mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 
clipped images in this presentation see http://streams.gerstein.info . 
- In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt


