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Transition from Mining to Modeling
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Combining Mining & Modeling
• Complementarity of physical & ML approaches
- “Physical approaches in principle being directly interpretable 

and offering the potential of extrapolation beyond observed 
conditions, whereas data-driven approaches are highly flexible 
in adapting to data”

• Hybrid #1: ML into physical 
- e.g. Emulation of specific parts of a physical for computational 

efficiency 
- More..

• Hybrid #2: 
Physical knowledge can be integrated into ML framework
- Network architecture
- Physical constraints in the cost function
- Expansion of the training dataset for under sampled domains 

(ie physically based data augmentation) [More….]
https://www.nature.com/articles/s41586-019-0912-1
2019 Nature volume 566, pages195–204 (2019)
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Hybrid 
#1: 

ML into 
physical 
models

(1) Improving parameterizations

(2) Replacing a ‘physical’ sub-model with a machine learning model

(3) Analysis of model–observation mismatch

(4) Constraining submodels

(5) Surrogate modelling or emulation
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[Wang et al. Structure (‘19, in press)]
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experimental 
∆BA records

(under-sampled)

(*87 human protein records from Platinum)

~0.1K

SNV-protein-drug 
tuple in GenoDock

~10K

∆BA for each SNV-
protein-drug tuple

(pseudo gold-standard)

~10K

Physically-
based Data 
Augmenting

• Expansion of the training dataset 
for under sampled domains

• Data augmentation is crucial to 
avoid overfitting

The Physically-based Data Augmentation Approach:
Leveraging Physical Calculations of ∆BA to Fill the Gap 

(Reichstein et al., Nature, 2019 & Xie et al., preprint, 2018)

Physical Data Augmentation for Hybrid Physical-Statistical Model Construction 

The Major Hurdle: 
Highly Scant Ligand Binding Assay Data for ∆BA 

Number of sequenced 
exonic SNVs

>10M

SNV

~2.6k drug ligands 
associated with ~60k SNVs 

~2.6K

SNV+Drug

~175k SNVs mapped with at 
least one human PDB (>2.8Å )

~175K

SNV+PDB

SNV-drug-structure tuples 
in GenoDock Dataset

~10K

SNV-protein

-drug

~0.1k

Too scant to train or 
to parameterize a 
statistical learning 
model

experimental ∆BA records 
of human protein  from 
Platinum Dataset
(gold-standard for ∆BA )

Example of Hybrid #2: Integrating Physical Knowledge into Machine Learning
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Framework of the GenoDock Project - from Dataset Preparation to Model Construction
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[Wang et al. Structure (‘19, in press)]


