Biomed. Data Science:

Transition from Mining to Modeling
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Combining Mining & Modeling

« Complementarity of physical & ML approaches

- “Physical approaches in principle being directly interpretable
and offering the potential of extrapolation beyond observed
conditions, whereas data-driven approaches are highly flexible
iIn adapting to data”

« Hybrid #1: ML into physical
- e.g. Emulation of specific parts of a physical for computational
efficiency
- More..
« Hybrid #2:
Physical knowledge can be integrated into ML framework
- Network architecture
- Physical constraints in the cost function

- Expansion of the training dataset for under sampled domains
(ie physically based data augmentation) [More....]

https://www.nature.com/articles/s41586-019-0912-1
2019 Nature volume 566, pages195-204 (2019)



https://www.nature.com/articles/s41586-019-0912-1
2019 Nature volume 566, pages195-204 (2019)
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(1) Improving parameterizations

(2) Replacing a ‘physical’ sub-model with a machine learning model
(3) Analysis of model—-observation mismatch

(4) Constraining submodels

(5) Surrogate modelling or emulation



Example of Hybrid #2: Integrating Physical Knowledge into Machine Learning

Physical Data Augmentation for Hybrid Physical-Statistical Model Construction

The Major Hurdle:
Highly Scant Ligand Binding Assay Data for ABA

O

r N N B B N B .
experimental ABA records I Too scant to t.raln or I
of human protein from I to parameterize a i
Platinum Dataset [ statistical learning I
(gold-standard for ABA ) [ model i

[Wang et al. Structure (‘19, in press)]

The Physically-based Data Augmentation Approach:
Leveraging Physical Calculations of ABA to Fill the Gap

(Reichstein et al., Nature, 2019 & Xie et al., preprint, 2018)
* Expansion of the training dataset
for under sampled domains
* Data augmentation is crucial to
avoid overfitting
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Framework of the GenoDock Project - from Dataset Preparation to Model Construction
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