Biomedical Data Science:
Analysis of Network Topology
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Network Topology

Reasons for Networks:
Overcome shortcomings
of linear genome annotation
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Networks occupy a midway
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Network Topology

Reasons for Networks:
Useful way of thinking
about disease



Network pathology & pharmacology
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Interactome Networks and Human Disease

Vol 455|23 October 2008 d0i:10.1038/nature07385

nature

Phenotypes
Comprehensive genomic characterization
defines human glioblastoma genes and e daiar
core pathways disorders
The Cancer Genome Atlas Research Network* /
e
a
EGFR ERBB2 PDGFRA MET
GWAs RTK/RAS/PI(3)K ) o =
signalling altered l
in 88% - L J
Mutation, amplification Mutation Amplification ~ Amplification
in 45% in 8% in 13% in 4%
I I I I
Mutation, homozygous Mutation, homozygous
deletion in 18% @ _I - - I__ @ deletion in 36%
Cance Mutation in 2% Mutation in 15%
enes
g l Amplification in 2%
/-Proliferation ) _L
L survival

translation )

Ii Mutation in 1%
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Network Topology

Reasons for Networks: Comprehensive
representation, capable of representing
many types of biological & non-biological
data & bridging between disciplines



Networks as a universal language

Electronic
Circuit
Disease Neura
Spread [Cajal]
[Krebs]
Protein A
Interactions
[Barabasi]
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Combining networks forms an ideal way

of integrating diverse information

Part of the
TCA cycle

—— Metabolic

pathway

------------- » Transcriptional

regulatory
network

Physical protein-
protein Interaction

Co-expression
Relationship
Genetic interaction

(synthetic lethal)
Signaling pathways
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Richness of the Visual Some structure (connectivity)
Representation of Networks but some flexibility (e.g. edge
colors, node positions and
shapes) that can used to
encode additional information
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Network Topology

Building Networks
in Genomics



Origin of Networks

Protein-protein interactions
¢ Phosphorylation networks

Metabolic Networks

Regulatory networks
¢ from Chip-Seq (see next slide)

“Squared” scale

¢ 6K genes in yeast but ~18M potential interactions
(6000 chose 2 pairs of interactions)
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Different Types

of Molecular Networks

Protein-protein Interaction networks
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[Toenjes, et al, Mol. BioSyst. (2008);
Jeong et al, Nature (2001); [Horak, et al,
Genes & Development, 16:3017-3033;
DeRisi, lyer, and Brown, Science,
278:680-686]
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Data Flow: Chip-seq expts. to co-associating peaks

119 TFs from 458 ChlIP-Seq experiments (2 Tb tot.)

v

Signal Tracks

L L

* Mostly in Tier 1 cell lines
- K562, GM12878, H1h-ESC...
» Matching RNA-Seq data in all cell-lines

* SPP & PeakSeq
* thresholding w. IDR (replicas)
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Data Flow: peaks to proximal & distal networks

Peak Calling

’\1' — O

Assigning TF binding sites to targets

e —o— P"_’
v

Filtering high confidence edges & distal regulation

Based on stat. model combining
signal strength & location relative to typical binding
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Hi-C contact map

Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;
restriction and mark pull down biotin
Hindlll enzyme with biotin

AAGCTT
TTCGAA

Sequence using
paired-ends

19



Hi-C contact map and Genome architecture
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Topologically Associating Domain

Structural variations affecting TAD boundaries
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Genome structure modeling

Low

Pierro et al. PNAS, 2016
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Network Topology

What are the Main
Quantities that Can be
Calculated from Networks?



* Degree of a node: the number of edges incident on the node

Q

Degree of node i = 5

24



Network parameters

Number of incoming and outgoing connections

Incoming connections = 2.2

\L/ ~each gene is regulated by ~2 TFs

In-degree

v
IR Outgoing connections = 20.2

—+each TF regulates ~20 genes

Connectivity Out-degree

25



Clustering coefficient

 Clustering Coefficient:

— Ratio of existing links to maximum number of links for neighbouring nodes

— Example:
* For A:

3 neighbours A
«2 existing link

3 possible links

» Clustering coefficient

° CA=2/3

Example from: http://www.learner.org/courses/mathilluminated/units/11/textbook/04.php

26



Clustering coefficient

 Average Coefficient:
— Average of clustering coefficients of all nodes n

C=- Zc

— Measure of inter- connectedness of the network
— Global property

« Example:
— Clustering coefficient: / . C
Ca=2/3 Cg=2/3 B
C=1/3 (C,=1/3

— Average coefficient = : \ D

1/4(2/3+2/3+1/3+1/3)= 0.5 il

Example from: http://www.learner.org/courses/mathilluminated/units/11/textbook/04.php




Path length

e Number of edges along a path

e Path length = 3

e Meaning:
e Number of intermediate TFs to reach final
target

e Indication of how immediate a response

IS

28



Path length
* Shortest path length:

. L(i,j) is the minimum number of edges that must be traversed to
travel from a vertex i to another vertex j of a graph G

i o Liy=2
O

Graph Theory Terminology (Batten, pp. 92-105)

]
* Characteristic path length (Average p

ath length )

e The characteristic path length L of a graph is the average of theL )

every possible pair (i,j)

1
L= n(n— 1)2 L(”)

e Networks with small values of L are said to have the “small world property”

http://en.wikipedia.org/wiki/Average_path_length




Network motifs

Regulatory modules within the network

/N X

SIM MIM FBL FFL

|

— <

€ — <
o
0~

[Alon U, 2007, Nature Reviews Genetics, Network motifs: theory and experimental appro§9nes]



FFL = Feed-forward loops
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[Alon U, 2007, Nature Reviews Génetics]
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Cligues

Fully connected sub-components
Related measures

k-cores : For all vertices in a graph G K
have degree at least k

[Hogue et al, BMC BIOINFORMATICS, 2003]

Problem: High-throughput experiments
are prone to missing interactions



One solution—defective cliques

e If proteins P and Q interact P

with a clique K of proteins
which all interact with
cach other, then P and Q
are more likely to interact
with each other

« P,Q,and K form a
defective clique

Predicting protein interactions by completing defective cliques

[Yu et al. Bioinformatics (2006)]



Network Topology

Simple Mathematical Models
for Interpreting Complex
Topology: Scale Free
Networks & Hubs



Models for networks of complex topology

- « Erdos-Renyi (1960)
« Watts-Strogatz (1998)
« Barabasi-Albert (1999)

X A “ ° '_”! A
Q TN o =

." ) ) '\ \S
i ° y
; s A Barabasi & R Albert

"Emergence of scaling in
random networks,"
Science 286, 509-512 (1999).
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The Erdds-Rényi [ER] model (1960)

 Start with N vertices and no edges
» Connect each pair of vertices with probability Pgg

Important result: many properties in these graphs appear quite suddenly, at
a threshold value of Pgr(N)

-If Per~c/N with c<1, then almost all vertices belong to isolated trees
-Cycles of all orders appear at Pgg ~ 1/N

37



The Watts-Strogatz [WS] model (1998)

Regular Small-world

Increasing randomness

« Start with a regular network with N vertices
* Rewire each edge with probability p

For p=0 (Regular Networks): For p=1 (Random Networks):
*high clustering coefficient low clustering coefficient
*high characteristic path length *low characteristic path length

QUESTION: What happens for intermediate values of p?

38



1) There is a broad interval of p for which L is small but C remains large

1T oo 8 o & g D- T T pe
e o |
o8l °* Cp)/CcO) © ]
- n -
0.6 + .
I . ]
04| . o -
ozl L(p)/ L©O) ° . i
r [ ] ° o 4
® e o o P
0 L s g aaaal poa g osaaaal 1 Lot s gl 1 it pa 0
0.0001 0.001 0.01 0.1 1
p
2) Small world networks are common :
Table 1 Empirical examples of small-world networks
[-actua[ L random Ca-:(ual Crandom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
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Small world network

 Asimple connected graph G exhibiting two properties:

— Large Clustering Coefficient: Each vertex of G is linked to a relatively well-
connected set of neighboring vertices, resulting in a large value for the
clustering coefficient C(G);

— Small Characteristic Path Length: The presence of short-cut connections
between some vertices results in a small characteristic path length L(G).

Regular Small-world Random

p=0 » p=1
Increasing randomness

* |ocal connectivity and global reach

Watts and Strogatz (1998), Nature, Collective dynamics of ‘small-world’ networks




Look at the distribution of degrees

The Barabasi-Albert [BA] model (1999)
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[From Barabasi & Bonabeau, Sci. Am., May '03]

Random v Scale-free Networks

RANDOM NETWORKS, which resemble the U.S. highway system nodes with a very high number of links. In such networks, the

(simplified in left map), consist of nodes with randomly placed distribution of node linkages follows a power law (center graph)

connections. In such systems, a plot of the distribution of node in thatmost nodes have just a few connections and some have

linkages will follow a bell-shaped curve (left graph), with most a tremendous number of links. Inthat sense, the system has no

nodes having approximately the same number of links. “scale.” The defining characteristic of such networks is that the
In contrast, scale-free networks, which resemble the U.S. distribution of links, if plotted on a double-logarithmic scale

airline system (simplified in right map), contain hubs (red)— (right graph), results in a straight line.

Random Network Scale-Free Network

Bell Curve Distribution of Node Linkages Power Law Distribution of Node Linkages

— Typical node

Number of Nodes

Number of Nodes

Number of Nodes
(log scale)

Number of Links Number of Links Number of Links [log scale)
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Scale-free networks in Biology

Power-law distribution

log l’(k)‘ (

log(Frequency)

S —¢ :
e P(k)~k
\\/ )
i \\""/
70,
\ o
_ 1 7 ;’ N7 N
log k

log(Degree)

Hubs dictate the structure of the network

[Barabasi]
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@ two problems with the previous models:
1. N does not vary
2. the probability that two vertices are connected is uniform

« GROWTH: starting with a small number of vertices mq at every timestep add
a new vertex with m < mg

- PREFERENTIAL ATTACHMENT: the probability Il that a new vertex will be
connected to vertex i depends on the connectivity of that vertex:

k

H(kz) — Z I
J
J
0 t=2 © =3 @
=l P -",P . ’P
- / - CERY o
_/'/ /‘ 5 ,-/ f !
& 9 j'j o //
/
G. / /
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Birth of Scale-Free Network

(green] prefers to attach to an existing node (red] that already has many other connections. These two basic mechanisms—growth

C e —=©

¢ q ? /x|
0/ {

\ |

A SCALE-FREE NETWORK grows incrementally from two to 11 nodes in this example. When deciding where to establish a link, a new node

and preferential attachment—will eventually lead to the system’s being dominated by hubs, nodes having an enormous number of links.

[From Barabasi & Bonabeau, Sci. Am., May '03]
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SCALE FREENESS GENERALLY EVOLVES THROUGH PREFERENTIAL
ATTACHMENT (THE RICH GET RICHER)

The Duplication Mutation Model Description
4 4
0 9 * Theoretical work shows that a mechanism
of preferential attachment leads to a scale-
G o e free topology
e (“The rich get richer”)
Q * In interaction network, gene duplication
The interaction followed by mutation of the duplicated gene
Gene duplication partners of A are is generally thought to lead to preferential
more likely to be attachment
duplicated
* Simple reasoning: The partners of a hub
are more likely to be duplicated than the
partners of a non-hub
- -

Source: Albert et al. Rev. Mod. Phys. (2002) and Middendorf et al. PNAS (2005)
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SCALE FREENESS GENERALLY EVOLVES THROUGH PREFERENTIAL
ATTACHMENT (THE RICH GET RICHER)

The Duplication Mutation Model

Description

B

The interaction
partners of A are
more likely to be
duplicated

Gene duplication

Vs

* Theoretical work shows that a mechanism
of preferential attachment leads to a scale-
free topology

(“The rich get richer”)

* In interaction network, gene duplication
followed by mutation of the duplicated gene
is generally thought to lead to preferential
attachment

* Simple reasoning: The partners of a hub
are more likely to be duplicated than the
partners of a non-hub

Source: Albert et al. Rev. Mod. Phys. (2002) and Middendorf et al. PNAS (2005)
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Random Network, Accidental Node Failure

O
O
C
Before After -\.’—J—/rx

Scale-Free Network, Accidental Node Failure

Knocking
Out
Nodes In
Scale-free

[From Barabasi & Bonabeau, Sci. Am., May '03]

and
Random
Networks
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Network Topology

Relating Hubs to
Biological Variation &
Essentiality



Hubs tend to be Essential

Integrate gene essentiality data with protein
interaction network. Perhaps hubs represent

vulnerable points?
[Lauffenburger, Barabasi] 7

25 -

\./

N
o
1
—

—
(&)
1

"hubbiness”
Average degree (K)

(&)
]

[Yu et al., 2003, TIG] Non- Essential Essential
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Notably, the most highly conserved proteins were highly connected in E.coli protein interaction network.
(E.coli)

- Butland et al. 2004, Nature
Connectivity of well-conserved proteins in network is negatively correlated with their rate of evolution.
(Saccharomyces cerevisiae)

- Fraser et al. 2002, Science
- Fraser et al. BMC Evol. Biol.
(2003)

Proteins that have a more central position evolve more slowly and are more likely to be essential for

survival. (Saccharomyces cerevisiae; C. elegans; Drosophila)
- Hahn et al. 2005, Mol Biol Evol

More miRNA regulation of a target gene associated with lower dN/dS (r = -.21) (M. musculus)
- Cheng et al. 2009, BMC Genomics

Slowly evolving proteins tend to have more interaction partners. (Saccharomyces cerevisiae)
- Xia et al. 2009, Plos Comput Biol

More Connectivity,
More Constraint :
A theme borne out

in many studies o-—I I I I I o-j I I I [

High High
# of Protein Interactors # of Transcnptional Regulators

Fold Enrichment
Fold Enrichment

Fold Enrichment of slowly evolved proteins - Xia et al.
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Rapid Evolution in the
interaction network takes
place at the periphery

* Pos. sel. v. deg. centrality:
p=-.06, P<12e6

- Effect is independent of any bias due
to gene expression differences

- Update w. 1000G Phase |
SNP dens. v. centrality:
p=-.1, p<2.2e-16

@)

O

High likelihood of
positive selection

Lower likelihood of
positive selection

Not under positive
selection

No data about
positive selection

Source: Nielsen et al. PLoS Biol. (2005), HPRD, and Kim et al. PNAS (2007)
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Network Topology

Other Measures of Centrality
besides Hubs: Bottlenecks &
their Calculation



Another measure of Centrality:
Betweenness centrality

Betweenness of a node is the number of
shortest paths of pairs of vertices that run
through it -- a measure of information flow.

Freeman LC (1977) Set of measures of centrality based on betweenness. Sociometry 40: 35-41.

Girvan & Newman (2002) PNAS 99: 7821.

~
~
-
~
~o -




@ O® O

Bottleneck

Hub-bottleneck node

Mon-hub-bottleneck node
Hub-non-bottleneck node

Non-hub-non-bottleneck node

Bottlenecks & Hubs

[Yu et al., PLOS CB (2007)]
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Shortest Paths: The Dijkstra Algorithm

Source

A = G (through C)

More information:
1.Dijkstra, E. W. (1959). "A note on two
problems in connexion with graphs".
Numerische Mathematik 1: 269-271
2.Algorithmics: Theory and Practice,
Brassard and Bratley (1988), p87-92

Tqrget
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Distance

Previous
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Visited

Unvisited

Distance

Previous A A
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...Finally

Distance

Previous A A C C E E
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Traceback- dynamic programming

* Use the previous array, track back from G to E,

then C, and finally A.

Ta rget

Dlsta nce
Previous

Source

60



Betweenness of C

Pair of nodes

Betweenness(v) :ZS e (Ust (v)/o-st)

where og;is the total number of shortest paths
from source s to target t and ¢, (v) is the number
of those paths that pass through v.

11 shortest paths going through C

m m m O O O o o O O ™ W ™ W ™ » » >» >» >» >
6 6 m O mMm m OO M mMm O O m m O O 6G =m m O O @



Bottleneck bridging between
processes

MAP Kinase pathway
Regulation of mitotic cell cycle regulating spore morphogenesis .,

[Yu et al., PLOS CB (2007)]



Bottlenecks are what matters in
reqgulatory networks

60%
B Hub-non-bottlenecks

50% A P < 1020 B Bottleneck-non-hubs
g v
c
Q
o 40% - o O
© P <104
g
@ 30% - |
()]
o
c
0 20% -
©
o
LL

10% -

0% ~ T

Interaction Network Regulatory Network

[Yu et al., PLoS Comput Biol (2007)]
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Network Topology

Other Measures of
Centrality besides Hubs:
Heirarchy



BETSY AFAEL
VR CONTRELER

RRTWIPR
YR TREASLRER

VE.SOITWARE
TECHNDLDEY

Network
Hierarchy
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Identify
Hierarchy Q
TF out-degree = 3
QX
( N

TF target

]

Network
Stats to ‘

]

Q ] [ ]non-TF target

Hierarchy Height Statistic =
(normalized TF Out deg. — In deg.)
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Determination of "Level”
in Regulatory Network Hierarchy with
Breadth-first Search

|. Example network with all 4 motifs Il. Finding terminal nodes (Red)

IIl. Finding mid-level nodes (Green) IV. Finding top-most nodes (Blue)

Level 3

Level 2
Level 1 Level 1

[Yu et al., PNAS (2006)]

.GersteinLab.org .«
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Using Simulated Annealing to Globally
Minimize the Number of Upward Pointing
Edges

Probing direction is 0
an optimization problem

relocatlng nodes

68 = Lecture



Hierarchy Score Maximization Algorithm

. maximize HS
0

B
@

C-O0-0C-

HSM algorithm
L1 L2 L3
N1 0O 0 {1
N2 04 06 O
0 0.840.16 L3

Z
w

N4 | 0 0.560.44

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N5 0o 0 | 1 @ |
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

-NG o 1 O - : -2

N7 046054 0

Ng | 1 0 o @ L1

N9 11 0 o

Discretized hierarchy
N1071 0 o network

Probabilistic hierarchy
network
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