Biomed. Data Sci:

Variant Identification, Focusing on SVs

Mark Gerstein, Yale University gersteinlab.org/courses/452 (last edit in spring '19, pack #6)

Lectures.GersteinLab.org

ŝ

Bayes' Theorem to detect genomic variant

In the above equation:

- D refers to the observed data
- *G* is the genotype whose probability is being calculated
- G_i refers to the *i*th possible genotype, out of n possibilities

Calculating the conditional distribution P(D|G):

Assuming an error free model, for each heterozygous SNP site of the diploid genome, covered by K reads, the number of reads *i* representing one of the two alleles follows binomial distribution.

$$P_{err_free}(D|G) = f(i|k, 0.5) = \binom{k}{i} 0.5^{k}$$

With errors, the calculation is more complicated.

In general:

$$P(D|G) = P_{err_free}(D|G) + P_{err}(D|G)$$

Lectures.GersteinLab.org

6

1. Paired ends

Methods to Find SVs

3. Read depth (or aCGH)

4. Local Reassembly

Read Depth

Lectures.GersteinLab.org

Reads to Signal Track

Reads (fasta) + quality scores (fastq) + mapping (BAM)

Reads => Signal (Intermediate file)

Accumulating @ >1 Pbp/yr (currently), ~20% of tot. HiSeq output

Example of Application to RD data

- To get highest resolution on breakpoints need to smooth & segment the signal
- BreakPtr: prediction of breakpoints, dosage and crosshybridization using a system based on Hidden Markov Models

Korbel*, Urban* et al., PNAS (2007)

Statistically integrates array signal and DNA sequence signatures (using a discrete-valued bivariate HMM)

Korbel*, Urban* et al., PNAS (2007)

Mean-shift-based (MSB) segmentation: no explicit model

- For each bin attraction (meanshift) vector points in the direction of bins with most similar RD signal
- No prior assumptions about number, sizes, haplotype, frequency and density of CNV regions
- Not Model-based (e.g. like HMM) with global optimization, distr. assumption & parms. (e.g. num. of segments).
- Achieves discontinuity-preserving smoothing
- Derived from image-processing applications

Paired-End

Paired-End Mapping

- Both paired-ends map within repeats.
- Limited the distance between pairs; therefore, neither large nor very small rearrangements can be detected

<u>Overall</u> <u>Strategy for</u> <u>Analysis of</u> <u>NextGen</u> <u>Seq. Data</u> <u>to Detect</u> <u>Structural</u> Variants

Split Read

Read-depth works well on a variety of sequencing platforms but provides imprecise breakpoints

[Abyzov et al. Gen. Res. ('11)]

[NA18505]

Split-read Analysis

RDV & Mobile Elements

<u>Retroduplication</u> variation (RDV)

Pseudogenes & Genomic Duplications

Pseudogenes are among the most interesting intergenic elements

- Formal Properties of Pseudogenes (Ψ G)
 - Inheritable
 - Homologous to a functioning element ergo a repeat!
 - Non-functional
 - No selection pressure so free to accumulate mutations
 - Frameshifts & stops
 - Small Indels
 - Inserted repeats (LINE/Alu)
 - What does this mean? no transcription, no translation?...

Identifiable Features of a Pseudogene (ψRPL21)

20

[Gerstein & Zheng. Sci Am 295: 48 (2006).]

Two Major Genomic Remodeling Processes Give Rise to Distinct Types of Pseudogenes

[Gerstein & Zheng. Sci Am 295: 48 (2006).]

Impact of Genetic Variability: Loss-of-function

- Previous LoFs are considered as having high probability of being deleterious
- Surprisingly, ~ 100 LoF variants per genome, 20 genes are completely inactivated
- Among ~100 LoFs, we estimate 2 recessive, close to 0 dominant disease nonsense variants per healthy genome.

	Gene	Ancestral State
Gene	Gene	

The Genome Remodeling Process

The Genome Memorening Fracess

Exact Breakpoints & Mechanism Classification

4 mechanisms for SV formation

NAHR (Non-allelic homologous recombination)

Flanking repeat (e.g. Alu, LINE...)

NHEJ (NHR) (Non-homologousend-joining)

No (flanking) repeats. In some cases <4bp microhomologies

TEI (Transposable element insertion)

L1, SVA, Alus

VNTR

(Variable Number Tandem Repeats)

Number of repeats varies between different people

SV Mechanism Classification

[Lam et al., ('10) Nat. Biotech.]

SV Ancestral State Analysis

1000G Summary

1000G SV (Pilot, **Phase I & III**)

Many different callers compared & used

- including SRiC & CNVnator but also VariationHunter, Cortex, NovelSeq, PEMer, BreakDancer, Mosaik, Pindel, GenomeSTRiP, mrFast....
- Merging
- Genotyping (GenomeSTRiP)
- Breakpoint assembly (AGE & Tigra_SV)
- Mechanism Classification

Summary Stats of 1000GP SV Phase3

- 68,818 SVs
- 2,504 unrelated individuals
- 26 populaSons
- 37,250 SVs with resolved breakpoints

[2] 1000GP Phase3 SV paper. Submided to Nature, 2015.[3] 1000GP ConsorSum. Submided to Nature, 2015.

Phase 3: Median Autosomal Variant Sites Per Genome

	AFR		AMR		EAS		EUR		SAS	
Samples	661		347		504		503		489	
Mean Coverage	8.2		7.6		7.7		7.4		8.0	
	Var. Sites	Singletons								
SNPs	4.31M	14.5k	3.64M	12.0k	3.55M	14.8k	3.53M	11.4k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large Deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (LINE1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12	0	9	0	10	0	9	0	11	0
NonSynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
UTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
Insulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31k
TFBS	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

Different Approaches Work Differently on Different Events

Deletions

[Zhang et al. ('11) BMC Genomics]