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Prioritizing Variants in 
Personal Genomes: 

Using functional 
impact, with particular 
application to cancer

Mark Gerstein
Yale

Slides freely 
downloadable from 

Lectures.GersteinLab.org
& “tweetable” (via @MarkGerstein). 

No Conflicts for this Talk
See last slide for more info.
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tumor

normal

Personal genomes will soon become a commonplace part of medical research & eventually treatment 
(esp. for cancer). They will provide a primary connection for biological science to the general public.

Personal Genomics 
as a Gateway into Biology
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Personal Genomics 
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment 
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Keys to genome interpretation

Relating individuals' variants to DBs

Scaling DBs to the population

Identifying key variants -
separating into rare, recurrent, 
common, &c
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The Scaling of Genomic 
Data Science:

Powered by exponential 
increases in 

data & computing

(Moore’s Law)

[NHGRI	website	+	Waldrop	(‘15)	Nature]
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Exponential Scaling Changes Fields Using Genomic Data

[Muir	et	al.	(‘15)	GenomeBiol.]
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Common

Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation
A Typical 
Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Coding Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger
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Finding Key 
Variants

Germline

• Common variants
• Can be most readily associated with phenotype (ie disease) via GWAS
• Usually their functional effect is weaker
• Many are non-coding
• Issue of LD in identifying the actual causal variant.

• Rare variants
• Associations are usually underpowered due to low frequencies but often have larger 

functional impact
• Can be collapsed in the same element to gain statistical power (burden tests).

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476

CAN YOU FIND THE PANDA?
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Finding Key 
Variants

Somatic

• Overall
• Often	these	can	be	thought	of		as very	rare	variants	

• Drivers
• Driver	mutation	is	a	mutation	that	directly	or	indirectly	confers	a	selective	growth	
advantage	to	the	cell	in	which	it	occurs.

• A	typical	tumor	contains	2-8	drivers;	the	remaining	mutations	are	passengers.
• Passengers

• Conceptually,	a	passenger	mutation	has	no	direct	or	indirect	effect	on	the	
selective	growth	advantage	of	the	cell	in	which	it	occurred.

CAN YOU FIND THE PANDA?

Vogelstein B. Science 2013. 339(6127):1546-1558
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Prioritizing Variants in Personal Genomes: Using functional 
impact, with particular application to cancer

• Introduction
• An individual's disease 

variants as 
the public's gateway into 
genomics & biology

• The exponential scaling of 
data gen. & processing

• Big-data mining to prioritize 
key variants as drivers

• Functional impact #1: 
Coding

• Frustration as a localized 
metric of SNV impact. 
Differential profiles for 
oncogenes v. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• RADAR: prioritize variants based on post-
transcriptional regulome using ENCODE eCLIP

• uORFs: Feature integration to find small subset of 
upstream mutations that potentially alter 
translation

• (Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 15
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What is 
localized 

frustration
?

[Ferreiro	et	al.,	PNAS	(’07)]
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Workflow for evaluating localized frustration changes (∆F)
[K
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	e
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Complexity of the second order 
frustration calculation

T
i
m
e

Accuracy

Second order frustration calculation (∆F)

MD-assisted free energy calculation (∆G)

First order frustration calculation (F)
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Comparing ∆F values across different 
SNV categories: disease v normal

Loss of 
frustration

Gain of 
frustration

[Kumar	et	al,	NAR (2016)]

Core residues Surface residues

Normal mutations (1000G) tend to unfavorably 
frustrate (less frustrated) surface more than core, 
but for disease mutations (HGMD) 
no trend & greater changes
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Comparison between ∆F 
distributions: TSGs v. oncogenes

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the 
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

[K
um

ar
	e
t	a

l,	
N
AR

(2
01
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]
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Funseq: a flexible framework to determine 
functional impact & use this to prioritize variants

Annotation (tf binding 
sites open chromatin, 
ncRNAs) & Chromatin 
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact 
(motif breaking, Lof) 

Network (centrality 
position) [F

u 
et

 a
l.,
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eB
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Finding "Conserved” Sites in the Human Population:
Negative selection in non-coding elements based on

Production ENCODE & 1000G Phase 1

(Non-coding	RNA)

(DNase	I	hypersensitive	sites)

Depletion	of	Common	Variants
in	the	Human	Population

Broad	categories	of	
regulatory	regions	under	

negative	selection
Related	to:
ENCODE,	Nature,	2012

Ward	&	Kellis,	Science,	2012
Mu	et	al,	NAR,	2011

(Transcription	factor	binding	sites)

(TFSS: Sequence-specific TFs)
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Differential 
selective 
constraints
among specific 
sub-categories

Sub-categorization	possible	
because	of	better	statistics	from	
1000G	phase	1	v	pilot

[Khurana et	al.,	Science (‘13)]
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Sub-categorization	possible	
because	of	better	statistics	from	
1000G	phase	1	v	pilot

Defining 
Sensitive
non-coding 
Regions

[Khurana	et	al.,	Science (‘13)]

Start 677 high-
resolution non-
coding categories; 
Rank & find those 
under strongest 
selection

~0.02% genomic coverage (top 5)
~0.4% genomic coverage  (~ top 25)
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FunSeq.gersteinlab.org
HOT	region

Sensitive	region
Polymorphisms

Genome

• Info. theory based method (ie
annotation “surprisal”) for weighting 
consistently many genomic features

• Practical web server 
• Submission of variants & pre-

computed large data context from 
uniformly processing large-scale 
datasets

[Fu et al., GenomeBiology ('14)]
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Germline pathogenic variants show 
higher core scores than controls

3 controls with natural polymorphisms (allele frequency >= 1% )
1.  Matched region:  1kb around HGMD variants
2.  Matched TSS:  matched for distance to TSS
3.  Unmatched: randomly selected

Ritchie	et	al.,	Nature	Methods,	2014 [Fu et al., GenomeBiology ('14, in revision)]
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Flowchart for 1 Prostate Cancer
Genome (from Berger et al. '11)
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• Functional impact #1: 
Coding
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metric of SNV impact. 
Differential profiles for 
oncogenes v. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• RADAR: prioritize variants based on post-
transcriptional regulome using ENCODE eCLIP

• uORFs: Feature integration to find small subset of 
upstream mutations that potentially alter 
translation

• (Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 15
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[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]

Schematic of RADAR Scoring
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Summary of eCLIP and Phastcon RNA Structure Cons. from Evofold

Enriched rare DAF in eCLIP peaks

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]



2
9

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Co-binding of RBPs form biologically relevant complexes

Binding hubs are enriched for rare variants

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]
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Regulatory Potential of RBPs derived from regression between gene network 
and expression levels

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]

A

B C
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RADAR Scores enriched in COSMIC genes and recurrently mutated regions
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Visualization of RADAR Features and Scoring

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]
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Upstream open reading frames (uORFs) regulate 
translation are affected by somatic mutation

● uORFs regulate the translation of downstream 
coding regions.

● This regulation may be altered by somatic 
mutation in cancer.

● In Battle et al. 2014 data uORF gain & loss 
assoc. protein level change.

[McGillivray	et	al.,	NAR	(‘18)]
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The population of functional 
uORFs may be significant

● Ribosome profiling experiments have 
low overlap in identified uORFs. 

● This suggests high false-negative rate, 
and more functional uORFs than 
currently known.

[McGillivray	et	al.,	NAR	(‘18)]

From a “Universe” of 
1.3 M pot. uORFs
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Prediction & validation of 
functional uORFs using 89 features

● All near-cognate start codons predicted.

● Cross-validation on independent ribosome 
profiling datasets and validation using in vivo 
protein levels and ribosome occupancy in 
humans (Battle et al. 2014).

[McGillivray	et	al.,	NAR	(‘18)]

Expr.
Level

Tissue
Dist.

Int. 
ATG
Start

C
on

s-
er

va
tio

n
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A comprehensive catalog of functional uORFs

● 180K: Large predicted positive set 
likely to affect translation 

● Calibration on gold standards, 
suggests getting ~70% of known

[McGillivray	et	al.,	NAR	(‘18)]

Universe of 1.3M
uORFs scored via 

Simple Bayes algo.

● Predicted functional uORFs may be intersected 
with disease associated variants.
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Somatic alteration of uORFs disproportionately affects 
certain cancers and molecular pathways

[McGillivray	et	al.,	NAR	(‘18)]

● uORF gain and loss occurs in cancer (incl. in cancer associated genes, e.g., MYC, BCL2, etc.).
● Alteration of translation may contribute to cancer. 
● These changes are concentrated in certain cancers and pathways.
● Mutations leading to uORFs diff in somatic vs. germline.
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An (underpowered) 
case study: pRCC

• Kidney cancer lifetime risk of 1.6% &
the papillary type (pRCC) counts for 
~10% of all cases

• TCGA project sequenced 161 pRCC
exomes & classified them into 
subtypes
– Yet, cannot pin down the cause for a 

significant portion of cases....
•35 WGS of TN pairs, 
perhaps useful? But not that definitive 
from a recurrence perspective

[Cancer Genome Atlas Research Network N Engl J Med. (‘16) ]



4
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Tyr-kinase 
MET:

Known Facts 
& New Results

•MET is long known pRCC driver
•In MET, TCGA found somatic SNVs, dup-
lications & an alt. splicing event as drivers (43/161).
•In addition, from 35 WGS we found

–A noncoding hotspot associated with MET
–Lack of SVs & breakpoints disrupting MET
–Germline SNP (rs11762213) predicts survival 
in type 2 patients

[A. Gentile, L. 
Trusolino and PM. 
Comoglio, Cancer 
and Metastasis 
Reviews (‘08); S. Li, 
B. Shuch and M. 
Gerstein PLOS 
Genetics (‘17)] 
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Beyond 
MET: 2 
non-coding 
hotspots in 
NEAT & 
ERRFl1, 

supported 
by expr. 
changes & 
survival 
analysis

[L
i e

t a
l. 

PL
O

S 
G

en
et

ic
s 

(‘1
7)

] 
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Yates	et	al,	NRG	(2012)

Tumor	Evolution:	Highlight	the	Ordering	of	Key	Mutations
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Construct evolutionary trees in pRCC

• Infer mutation order and tree structure based on mutation 
abundance (PhyloWGS, Deshwar et al., 2015)

• Some of the key mutations occur in all the clones while others 
are just in some parts of the tree 

DNMT3A: premature stop
NEAT1: noncoding
SMARCA4: missense

MET: noncoding
ERRFI1: noncodingKDM6A: missense

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)] 
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[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)] 

Mutation
distance

Germline

0.5
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(%)
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[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)] 

Mutation
distance

Germline
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Tree topology correlates with molecular subtypes

[L
i e

t a
l.,

 P
LO

S 
G

en
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(‘1
7)

] 
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• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 15
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github.com/gersteinlab/Frustration - S Kumar, D Clarke

pRCC - S Li, B Shuch

CostSeq2 - P Muir, S Li, S 
Lou, D Wang, 
DJ Spakowicz, L Salichos, J Zhang, 
GM Weinstock, F Isaacs, J Rozowsky

github.gersteinlab.org/uORFs
P McGillivray, R Ault, 
M Pawashe, R Kitchen, S 
Balasubramanian

FunSeq.gersteinlab.org

Y Fu, E Khurana, Z Liu, S Lou, 
J Bedford, X Mu, K Yip

RADAR.gersteinlab.org

J Zhang, J Liu, D Lee, L 
Lochovsky, J-J Feng, S Lou, 
M Rutenberg-Schoenberg
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Info about this talk
No Conflicts

Unless explicitly listed here. There are no conflicts of interest relevant to the material in this talk 

General PERMISSIONS
• This Presentation is copyright Mark Gerstein, Yale University, 2017. 
• Please read permissions statement at 

sites.gersteinlab.org/Permissions
• Basically, feel free to use slides & images in the talk with PROPER acknowledgement (via 

citation to relevant papers or website link). Paper references in the talk were mostly from 
Papers.GersteinLab.org. 

PHOTOS & IMAGES 
For thoughts on the source and permissions of many of the photos and clipped images in this 
presentation see streams.gerstein.info . In particular, many of the images have particular EXIF 
tags, such as  kwpotppt , that can be easily queried from flickr, viz: 
flickr.com/photos/mbgmbg/tags/kwpotppt


