Prioritizing Variants in
Personal Genomes:
Using functional
impact, with particular
application to cancer

Mark Gerstein
Yale

Slides freely

downloadable from
Lectures.GersteinLab.org

& “tweetable” (via @MarkGerstein).
No Conflicts for this Talk
See last slide for more info.




Personal Genomics
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Personal Genomics
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Keys to genome interpretation
Relating individuals' variants to DBs
Scaling DBs to the population
|dentifying key variants -

separating into rare, recurrent,
common, &c
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Cost per Raw Megabase of DNA Sequence

The Scaling of Genomic
Data Science:

N I H National Human Genome
Research Institute

genome.gov/sequencingcosts
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Exponential Scaling Changes Fields Using Genomic Data
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Hardeep Nahal , 12t Scientific
ICGC Workshop (Sept 2016)

Growth of ICGC datasets Release 22

projects
ICGC Data Portal Cumulative Donor Count for Member Projects
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Reldase 2 Release 22 (August 2016):
» 70 projects

* 19,290 donors total

* 16,236 donors w/ molecular data
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Human Genetic Variation

Population of

A Cancer Genome A Typical 2,504 peoples
° Genome ° 000
(¥ ) "M
Origin of Variants Class of Variants
Coding Non- 3.5-4.3M
coding
| 550 — 625K
2.1-25K
Somatic ~50 5K N (20Mb)
4.1 -5M

Prevalence of Variants

Driver (~0.1%) Rare* (1-4%) Rare (~75%)
* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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CAN YOU FIND THE PANDA’?

Finding Key
Variants

Germline

« Common variants
+ Can be most readily associated with phenotype (ie disease) via GWAS
» Usually their functional effect is weaker
* Many are non-coding
* Issue of LD in identifying the actual causal variant.
* Rare variants
» Associations are usually underpowered due to low frequencies but often have larger
functional impact
» Can be collapsed in the same element to gain statistical power (burden tests).

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476
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CAN YOU FIND THE PANDA’? _

Finding Key
Variants

Somatic

e Overall

* Often these can be thought of as very rare variants

* Drivers

* Driver mutation is a mutation that directly or indirectly confers a selective growth
advantage to the cell in which it occurs.
* A typical tumor contains 2-8 drivers; the remaining mutations are passengers.

* Passengers

* Conceptually, a passenger mutation has no direct or indirect effect on the
selective growth advantage of the cell in which it occurred.

Vogelstein B. Science 2013. 339(6127):1546-1558
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Prioritizing Variants in Personal Genomes: Using functional
impact, with particular application to cancer

* Introduction » Functional impact #2: Non-coding
« An individual's disease « FunSeq integrates evidence,
variants as with a “surprisal” based weighting scheme.
the public's gateway into Prioritizing rare variants with “sensitive sites”
genomics & biology (human conserved)
- The exponential scaling of + RADAR: prioritize variants based on post-

transcriptional regulome using ENCODE eCLIP

+ UORFs: Feature integration to find small subset of
upstream mutations that potentially alter
translation

(Low-power) application to pRCC

data gen. & processing

+ Big-data mining to prioritize
key variants as drivers
* Functional impact #1:

COdmg WGS finds additional facts on the canonical driver,
« Frustration as a localized MET. Other suggestive non-coding hotspots.
metric of SNV impact. Analysis of signatures & tumor evolution helps
Differential profiles for identify key mutations in different ways 15

oncogenes v. TSGs
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Complexity of the second order
frlistration calculation

SWT,

Second order frustration calculation (AF)

First order frustration calculation (F)

MD-ass

isted free energy calculation (AG)

Accuracy
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[Kumar et al, NAR (2016)]

Comparing AF values across different
SNV categories: disease v normal

I [ [
1KG ExAC HGMD 1KG EXAC HGMD
Core residues Surface residues

Normal mutations (1000G) tend to unfavorably
frustrate (less frustrated) surface more than core,
but for disease mutations (HGMD)

no trend & greater changes
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[Kumar et al, NAR (2016)]

Comparison between AF
distributions: TSGs v. oncogenes

A TSG Drivers B Oncogene Drivers
L ©F o4
< wo
<
J o o A
@ . 4
T A T A
core surface core surface

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.
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Prioritizing Variants in Personal Genomes: Using functional
impact, with particular application to cancer
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Funseq: a flexible framework to determine

functional impact & use this to prioritize variants

Annotation (tf binding
sites open chromatin,
ncRNAs) & Chromatin
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact
(motif breaking, Lof)

Network (centrality
position)

Non-coding annotation

o ® oo m ® SNV W Indel
o

l I \

\

\

\

\

\

Degree of negative selection

Motif disruptive score

breaking | \ |

| \ } :( )/

[ \

| | \ Degree of network centrality
Enhancer/

Promoter [ ‘

Khurana et al., Science ('13)]

[Fu et al., GenomeBiology ('14), ,
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Finding "Conserved” Sites in the Human Population:

Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1

Broad Categories
Coding !

Genomic Avg ia

Enhancer .
| ancer | R Broad categories of
(Non-coding RNA) nCRNA- regulatory regions under

(DNase | hypersensitive sites) DHS h negative SEIECtion
(TFSS: Sequence-specific TFs) Related to:
(Transcription factor binding sites) TFBS ENCODE, Nature, 2012
. H Ward & Kellis, Science, 2012
| Chromatin Mu et al, NAR, 2011

Pseudogene —
]

[ I T 1 I T ]
056 058 060 062 064 0.66 0.68

Fraction of rare SNPs

Depletion of Common Variants
in the Human Population
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A

GenomicAvg 27M SNPs |

Synonymous | 0.12M

TFBS

Coding 0.27M

>
Missense | 0.15M

Enhancer

TFSS
General

Chromatin

'
Pseudogene | 57K —i
> '

Broad Categories

0.56 06

Fraction of rare SNPs

Sub-categorization possible

Specific Categories

TF Families (motifs)

Coding
HMG
Forkhead

050 055 060 065 0.70

because of better statistics from

1000G phase 1 v pilot

Differential
selective
constraints
among specific
sub-categories

[Khurana et al., Science (‘13)]
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_ , ~0.4% genomic coverage (~ top 25)
:°s“;$,‘;§?’v‘gf127i</ L/ — ~0.02% genomic coverage (top 5)
Utreseema L SK 7 5

0.56 2.'6 . fo.é4 . lo.és 0.72 Defi n i n g
Sensitive

A Broad Categories B Specific Categories -
GenomicAvg 27M SNPs  }
. TF Families (motifs) - I
Coding  0.27M . r Coding . H
>
Missense | 0.15M . & Fom:.':ﬁ

Synonymous | 0.12M VoM
UTR| 0.4M

Regions

Enhancer & ° I
ovs [ — start © 7 7 high-
Trss B ° 5 .
) L : resolution non-
= : cer-nFy I — ¢ . . .
RN 050 055 060 0.5 0.70 COdmg C_ategorles’
Pseudogens : Rank & find those
o - under strongest
0.56 06 0.64 0.68 0.72 selection

Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

[Khurana et al., Science (‘13)]
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HOT region .
Sensitive region

Polymorphisms

wa = 1 + palogopa + (1 = pa)log, (1 = pa)

Info. theory based method (ie
annotation “surprisal”) for weighting
consistently many genomic features

« Practical web server
» Submission of variants & pre-

 Note: This online web server s based on Funseq2
v2.10.

s BT computed large data context from
Blm | e uniformly processing Iarge-scale
B = datasets

Um-cpedﬁcwww
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Germline pathogenic variants show
higher core scores than controls

o - =
unmatched: 0.86
o |
< — o
[]
2
©
xr o |
[\o R [0} o
2
@
o = |
N o o
[
2
I g
- ’ I | l o
o — ! L 8 -
T T T T T T
HGMD Matched region  Matched TSS Unmatched
regulatory (1,527)  (4,258) (13,861) (144,086) 00 02 04 06 0.8 10

False Positive Rate
3 controls with natural polymorphisms (allele frequency >= 1% )
1. Matched region: 1kb around HGMD variants

2. Matched TSS: matched for distance to TSS

3. Unmatched: randomly selected
Ritchie et al., Nature Methods, 2014 [Fu et al., GenomeBiology (14, in revision)]
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Prostate
cancer
I
1000 Genomes
Screen
n
Functional
annotation

1829 somatic SNVs.
Found in 1000 Genomes ?

( ultra-s )

Y\
b. Disruptive

In
ensitive region ?
N Y

/N

) (Targetgene known? )

5 e

W

brw?) (Targetgeneisahuo?)

Candidate drivers

1829 somatic SNVs

( Found in 1000 Genomes ?)

Y Unlikely to
——> | 123 ‘
N be driver
y

Target gene known ?

Flowchart for 1 Prostate Cancer
Genome (from Berger et al. "11)

[Khurana et al., Science (‘13)]
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Prioritizing Variants in Personal Genomes: Using functional
impact, with particular application to cancer
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Schematic of RADAR Scoring
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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Co-binding of RBPs form biologically relevant complexes
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branch point

Intron Poly() Tail
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O |

]
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‘ Splicing . . Cleavage
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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Regulatory Potential of RBPs derived from regression between gene network
and expression levels

Regulatory
A Potential
Binding Profile to 3' UTR
Tumor
°
o £ -
v‘ 4 3 g - —
L )
S o gr Gn1 0 -e—
4 g —
< o DESeg2 i ——
c
JOIS]
o ° 9s Gn2 :
o QD Gn2
< Normal kY] —
w S —
- S o O 9n Gno ~—
N 2 E gz -—
V 2 Gn.1 -~
)
Q O - —
Negative | M Positive
z =
B I L T S P C
READ ] ] ° PPIL4 in PAAD o SUBT in BRCA
! - - TR
i((sla:; =-.= .......
L\ 1
LR HCE g 3 S ....Low.(n.=241)
UCEC n g
BLCA ] 8 © ]
BRCA L [ ] <4 © e
CHOL | n Qo
- - -
oA g S S
LIHC | | |
KIRC = ] g g
ESCA
KIRP o p=0.004 n=86 ° p=0.003
gg:g u i r T T T T T T T T — © r T T T T T T T T T
:::g = 0 300 600 900 1500 2100 2700 0 800 2400 4000 5600 7200

Survival Time (days)

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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RADAR Scores enriched in COSMIC genes and recurrently mutated regions

A B

o B COSMIC genes B Reccurent Peaks
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b= o |
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Visualization of RADAR Features and Scoring
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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- DOWNLOADS DOCS EXAMPLE

RADAR can be run on the command line by following the instructions
on the Docs page or through the web here. Running RADAR through
the website will print the results after several moments. You can try
running RADAR through the web form with a sample file with one
variant. Alternatively, you may also input a list of variants into the form
as text. If variants are provided in both file and text formats, the
variant file will be scored and the text field will be ignored.

More details on the RADAR inputs can be found on the Docs page.

e Variants: a list of variants
o BED file: a BED file containing the variants
o Text format: type variants directly into a text box, lines may
be tab- or space-delimited
e Cancer type: a TCGA cancer type, only needed if any tissue-
specific scores are to be included.
e Tissue-specific scores: which tissue-specific scores should be
included along with the universal scores for each variant.

Variants:
Choose File no file selected

E.g. chr1 13506 13507 G A

Cancer type:
Select a cancer

Tissue-specific scores:
Key genes
Mutation recurrence
RBP-regulation power

Score variants

<4

e



Prioritizing Variants in Personal Genomes: Using functional
impact, with particular application to cancer

 |Introduction * Functional impact #2: Non-coding
« An individual's disease * FunSeq integrates evidence,
variants as with a “surprisal” based weighting scheme.
the public's gateway into Prioritizing rare variants with “sensitive sites”
genomics & biology (human conserved)
. The exponential scaling of « RADAR: prioritize variants based on post-

transcriptional regulome using ENCODE eCLIP

» UuOREFs: Feature integration to find small subset of
upstream mutations that potentially alter
translation

* (Low-power) application to pRCC

data gen. & processing

« Big-data mining to prioritize
key variants as drivers
* Functional impact #1:

COdmg + WGS finds additional facts on the canonical driver,
o Frustration as a localized MET. Other suggestive non-coding hotspots.
metric of SNV impact. « Analysis of signatures & tumor evolution helps
Differential profiles for identify key mutations in different ways 15

oncogenes v. TSGs



A

Upstream open reading frames (UORFs) regulate
translation are affected by somatic mutation

cps [ overlap [ uORF [] g
5 — 3 °
5 — [ — 3
5 — [ — 8
uORF CDS
translation
5'[ATG | F{ATG | 3
suppression A translation phenotype
5'{T7G | L ATG | -3 {disease risk
cancer

[McGillivray et al., NAR (“18)]

UORFs regulate the translation of downstream
coding regions.

This regulation may be altered by somatic
mutation in cancer.

In Battle et al. 2014 data uORF gain & loss
assoc. protein level change.

[ uORF gain
[ uORF loss
1

TN

-1

protein level change

10 11 12 13 14 15 16 17 18 19 20
# study subjects increasing power
e —
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ribosome profilng labeled uORFs

From a “Universe” of
1.3 M pot. uORFs

The population of functional
uORFs may be significant

functional uORFs
population size unknown

ribosome profiling labeled uORFs
known population size

high false negative rate

high false positive rate

&

all uORFs all uORFs
e Ribosome profiling experiments have
low overlap in identified uORFs.
e This suggests high false-negative rate,

and more functional uORFs than

currently known.

[McGillivray et al., NAR (‘18)]
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A comprehensive catalog of functional uORFs

Epositive score
Onegative score

total predicted positive 60, 2-voted positive
unlabeled Dpredicted positive 1.8X10° } §
8x10° dlmd]jﬂjj H HH]
: 0 L
Universe of 1 .3M £ ‘ d”H“ @ @ @
o i
UORFs scored via = o —=d O e o v 1-voted positive

70% 71% 72%

Slmple Bayes algo' 1746/2485 1228/1738 705/976

score

| sl

-

#UORFs

® 180K.: Large predicted positive set

e Predicted functional uORFs may be intersected likely to affect translation

with disease associated variants. _ ,
e (Calibration on gold standards,

suggests getting ~70% of known

[McGillivray et al., NAR (“18)]
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Somatic alteration of uUORFs disproportionately affects

certain cancers and molecular pathways

e UORF gain and loss occurs in cancer (incl. in cancer associated genes, e.g., MYC, BCL2, etc.).
e Alteration of translation may contribute to cancer.

e These changes are concentrated in certain cancers and pathways.

e Mutations leading to uORFs diff in somatic vs. germline.

%)
s
D ATG formation % 12-
c D 5
E )
ATG c ATG < > 8-
o o=
CTG CTG T c'o
E m = - 23
GTG O GTG Y a9
£ 2%
TG £ TG g & 4
ACG Iz [ ACG o gE
B ATT B ATT O
ATC o ATC 3 % o
[ © + © [%)] ©
5 g > ¢ g ¢ 2% g 8 ¢
ATA — ATA Y— = g 9 o 9 o S S
. 9] . v h 2 ° & § g 5
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0 1 H H 0 1 : L 5 © = k
: AGG| : ) : AGG = 2 g = @
normalized normalized = s 9] >
frequency TEC223REISESES frequency TEC22IRRAREEES g & & %
germline variant somatic mutation

cancer type
[McGillivray et al., NAR (‘18)]
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Prioritizing Variants in Personal Genomes: Using functional
impact, with particular application to cancer

 |Introduction * Functional impact #2: Non-coding
« An individual's disease * FunSeq integrates evidence,
variants as with a “surprisal” based weighting scheme.
the public's gateway into Prioritizing rare variants with “sensitive sites”
genomics & biology (human conserved)
. The exponential scaling of « RADAR: prioritize variants based on post-

transcriptional regulome using ENCODE eCLIP

» UuOREFs: Feature integration to find small subset of
upstream mutations that potentially alter
translation

* (Low-power) application to pRCC

data gen. & processing

« Big-data mining to prioritize
key variants as drivers
* Functional impact #1:

COdmg + WGS finds additional facts on the canonical driver,
o Frustration as a localized MET. Other suggestive non-coding hotspots.
metric of SNV impact. « Analysis of signatures & tumor evolution helps
Differential profiles for identify key mutations in different ways 15

oncogenes v. TSGs



An (underpowered) e e
case study: pRCC 4
» Kidney cancer lifetime risk of 1.6% & Reeaz |:t| I:

the papillary type (pRCC) counts for Copprumber2 |

~10% of all cases S

DNA methylation 1

 TCGA project sequenced 161 pRCC Copy number 1 | ;
exomes & classified them into m?afiﬁii .|”1:I§|"|“|I I :l"' g
subtypes oo ;'M - M
— Yet, cannot pin down the cause for a mngﬁgé i I F |II | |I| |III |I | Iliil |

significant portion of cases.... .

.35 WGS of TN pairs, e ||'|‘Mﬂ JHllWl”l

No. of Cases 9 | 22 . .

perhapS USGfUl? BUt nOt that deflnltlve Histologic Type Stage of Tumor
from a recurrence perspective i S P

[Cancer Genome Atlas Research Network N Engl J Med. (*16) ]
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‘MET is long known pRCC driver
‘In MET, TCGA found somatic SNVs, dup-
lications & an alt. splicing event as drivers 3/161).

In addition, from 35 WGS we found
—A noncoding hotspot associated with MET
—Lack of SVs & breakpoints disrupting MET
—Germline SNP (rs11762213) predicts survival

in type 2 patients

Tyr-kinase
MET:

Known Facts
& New Results

B
A MET
Noncoding exon Coding SNV
(5UTR) l (germline) . Proposed promoter I Retrotransposon p <0.034
Noncodin Proposed regulatory ‘
Coding exon l oy 9 @) regions :
116339283 (rs11762213) 2 o
3 o 7 :
E .
[ Yroceecccercctccccccccncees -+
a
116312044 116324318 116342376 116352009 =
2 kb =
- e ¥
116336619 a °
16343120 116354616
N
o
chr7 T T > — GG
116,310,000 (9 kb) 116,350,000 L1PA2 116,370,000 - GA
Noncoding exon exon2 SINE: MIR exon3
' o
g -
M T T 1
0 1000 2000 3000
Time(days)

[A. Gentile, L.
Trusolino and PM.
Comoglio, Cancer
and Metastasis

Reviews (‘08); S. Li,

B. Shuch and M.
Gerstein PLOS
Genetics (‘17)]
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Beyond
MET: 2
non-coding
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NEAT &
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supported
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changes &
survival
analysis

[Li et al. PLOS Genetics (‘17)]
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Tumor Evolution: Highlight the Ordering of Key Mutations

Normal MRCA
cell

A

Distant
metastasis
Time point X: Time point Y:
+ Driver mutations diagnosis and distant and
treatment initiation  local relapse

'
Time

Yates et al, NRG (2012)
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Construct evolutionary trees in pRCC

* Infer mutation order and tree structure based on mutation

abundance (PhyloWGS, Deshwar et al., 2015)
«  Some of the key mutations occur in all the clones while others

are just in some parts of the tree

DNMT3A: premature stop KDMBGBA: missense
NEATT: noncoding
SMARCA4: missense

0.2 Mutation
e distance

Germline

Population
(%)

Mutation

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)]
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Tree topology correlates with molecular subtypes

Type 2 Unclassified

Histological type/Patient ID rrrrrrﬂmmﬂmmﬂ 15 20(23| 24| 25|26|27| 25| 29| 30|31 |32| 33| 34|35
coca [[[[[[DDDD%%DI]I]]II H H

Copy humber gain
Somatic mutation
Splicing event

Germline mutation
BAP1/PBRM1/SETD2 mut.
CDKN2A copy number loss -
SDHB deletion

Promoter mutation

1-2 intronic mutation

NEAT1 somatic mutation
|§RRFI1 promoter mutation
Whole genome mutation rate,
DHS mutation percentage

g [SV number

* |[Evolution tree topology ‘ NA

\ i Long branches I
. Affecled I:IU"E‘"““-'" N4 BINo branch, less subelone

GOCA

< D C2a . C2b
Mutation rate/percentage/SV number
. High El Mediurn D Low

MET

Coding

OTHs

Noncoding
OTHs | MET

RKutaticn

[Li et al., PLOS Genetics (‘17)]
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Prioritizing Variants in Personal Genomes: Using functional
impact, with particular application to cancer

 |Introduction * Functional impact #2: Non-coding
« An individual's disease * FunSeq integrates evidence,
variants as with a “surprisal” based weighting scheme.
the public's gateway into Prioritizing rare variants with “sensitive sites”
genomics & biology (human conserved)
. The exponential scaling of « RADAR: prioritize variants based on post-

transcriptional regulome using ENCODE eCLIP

» UuOREFs: Feature integration to find small subset of
upstream mutations that potentially alter
translation

* (Low-power) application to pRCC

data gen. & processing

« Big-data mining to prioritize
key variants as drivers
* Functional impact #1:

COdmg + WGS finds additional facts on the canonical driver,
o Frustration as a localized MET. Other suggestive non-coding hotspots.
metric of SNV impact. « Analysis of signatures & tumor evolution helps
Differential profiles for identify key mutations in different ways 15

oncogenes v. TSGs



Prioritizing Variants in Personal Genomes: Using functional
impact, with particular application to cancer

* Introduction » Functional impact #2: Non-coding
« An individual's disease « FunSeq integrates evidence,
variants as with a “surprisal” based weighting scheme.
the public's gateway into Prioritizing rare variants with “sensitive sites”
genomics & biology (human conserved)
- The exponential scaling of + RADAR: prioritize variants based on post-

transcriptional regulome using ENCODE eCLIP

+ UORFs: Feature integration to find small subset of
upstream mutations that potentially alter
translation

(Low-power) application to pRCC

data gen. & processing

+ Big-data mining to prioritize
key variants as drivers
* Functional impact #1:

COdmg WGS finds additional facts on the canonical driver,
« Frustration as a localized MET. Other suggestive non-coding hotspots.
metric of SNV impact. Analysis of signatures & tumor evolution helps
Differential profiles for identify key mutations in different ways 15

oncogenes v. TSGs
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