Scaling Computation to Keep Pace with Data Generation

Slides freely
downloadable from
Lectures.GersteinLab.org
& "tweetable"
(via @markgerstein).

See last slide for more info.

Mark Gerstein Yale

Lectures. Gerstein Lab. org

Sequencing Data Explosion: Faster than Moore's Law for a Time

Kryder's Law and S-curves underlying exponential growth

- Moore's & Kryder's Laws
 - As important as the increase in computer speed has been, the ability to store large amounts of information on computers is even more crucial
- Exponential increase seen in Kryder's law is a superposition of S-curves for different technologies

The changing costs of a sequencing pipeline

From '00 to ~' 20, cost of DNA sequencing expt. shifts from the actual seq. to sample collection & analysis

The changing costs of a sequencing pipeline

the actual seq. to sample collection & analysis

> Alignment algorithms scaling to keep pace with data generation

Published Year

The changing costs of a sequencing pipeline

From '00 to ~' 20, cost of DNA sequencing expt. shifts from the actual seq. to sample collection & analysis

Sequencing cost reductions have resulted in a data explosion

Increasing diversity in usage of sequence data

Lectures.GersteinLab.org

Co-authorship Network of ENCODE members & Data Users

- ENCODE member
- non-member
- ENCODE member broker
- non-member broker
- ___ co-authorship

Co-authorship Network of ENCODE members & Data Users **ENCODE** member non-member **ENCODE** member broker neighbors: non-member broker co-authorship

neighbors: non-ENCODE ==>

30

10

100

1000

300

Co-authorship Network of ENCODE members & Data Users

- ENCODE member
- non-member
- ENCODE member broker
- non-member broker
- ___ co-authorship

Dynamics of coauthorship network

[Wang et al., TIG ('16)]

Scaling Computation to Keep Pace with Data Generation

- Sequencing costs are falling exponentially
 & the amount of data is increasing exponentially
 (in accordance with Kryder's law)
- Hence, shift in emphasis to computation. Here, pipeline processing & data management is keeping pace with sequencing (roughly), but downstream analysis work is increasing even faster
- Seq. data analysis is diffusing out of genomics into other disciples (eg ecology). Often this process is mediated by key connector individuals
- P Muir, S Li, S Lou, D Wang, DJ Spakowicz, L Salichos, J Zhang, F Isaacs, J Rozowsky ('16) GenomeBiology
- D Wang, KK Yan, J Rozowsky, E Pan ('16) TIG

Extra

To de la la Caratain la bor

Info about content in this slide pack

- General PERMISSIONS
 - This Presentation is copyright
 Mark Gerstein, Yale University, 2016.
 - Please read statement at www.gersteinlab.org/misc/permissions.html .
 - Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org). Paper references in the talk are mostly from Papers.GersteinLab.org.
- PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see streams.gerstein.info .