iomedical Data Science:
Introduction
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Overview: what is
Biomed. Data science?

(Placing it into the
context of Data
Science, in general)



Jim Gray’s 4t Paradigm

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

Science Paradigms

Thousand years ago:

science was empirical
describing natural phenomena

Last few hundred years:

theoretical branch N2
using models, generalizations [g]=4ﬂGp_ c”
Last few decades: e

a computational branch
simulating complex phenomena

Today: data exploration (eScience)
unify theory, experiment, and simulation

— Data captured by instruments
or generated by simulator

— Processed by software
— Information/knowledge stored in computer

— Scientist analyzes database/files
using data management and statistics

3= Lectures.GersteinLab.org



#3 - Simulation

Prediction based on
physical principles (eg

Exact Determination of
Rocket Trajectory)
Emphasis on:
Supercomputers

Jim Gray’ s 4th Paradigm

Science Paradigms

* Thousand years ago:
science was empirical
describing natural phenomena
» Last few hundred years:
theoretical branch
using models, generalizations e
N Last few decades: [*] )
a computational branch
simulating complex phenomena
p Today:
data exploration (eScience)
unify theory, experiment, and simulation
— Data captured by instruments
Or generated by simulator
— Processed by software
— Information/Knowledge stored in computer

— Scientist analyzes database / files
using data management and statistics

Gray died in '07.
Book about his ideas came out in ‘09.....

[Slide from : http://research.microsoft.com/en-us/um/people/gray/talks/stanford%2520symbolic%2520systems%2520seminar.ppt]
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What is Data Science? An overall, bland definition...

» Data Science encompasses the study of the entire lifecycle of data

- Understanding of how data are gathered &
the issues that arise in its collection

- Knowledge of what data sources are available
& how they may be synthesized to solve problems

- The storage, access, annotation, management, &
transformation of data

» Data Science encompasses many aspects of data analysis

— Statistical inference, machine learning, & the design of algorithms
and computing systems that enable data mining

— Connecting this mining where possible with physical modeling
- The presentation and visualization of data analysis
- The use of data analysis to make practical decisions & policy
« Secondary aspects of data, not its intended use — eg the data exhaust
— The appropriate protection of privacy
- Creative secondary uses of data — eg for Science of science
- The elimination of inappropriate bias in the entire process




* Ads, media, product ] ] _
placement, P Data Science in the wider world:

supply optimization, a buzz-word for successful Ads
* Integral to success of

GOOG, FB, AMZN, Eﬁ;}’:;gs
WMT... Review

, Bt it | :
Em,ﬂ}‘mm | Data Scientist: The Sexiest Job of the 21st Century
by Thomas H. Davenport and D.J. Patil

5:00.-0-04:'!40 i+ | mm.mw I

The data deluge

ANE HOW 53 BANGLE I A 34-PALT SPOOAL RIP2RT

Quentin Gallivan is CEO of Pentaho Corp., an Orlando, Florida-based
g provider of business analytics software.

DIDC
108 QIO Network o Cognizant
ﬁ :\x%j\}lb IDEAS FOR TECH NOLOGY LEADERS.
e 4 : N -
— o Rio Tyate . Artwork: Tamar Cohen, Andrew J Buboltz, 2011, silk screen on a page from a higH
— Why Big Datq Is All Retailers ’ ’
B Want for Christmas ) ) ) )
s Y When Jonathan Goldman arrived for work in June 2006 at LinkedIn, the business n
Do up. The company had just under 8 million accounts, and the number was growing q
uest post written by Quentin Gallivan . . e N . . .
2 Guestpostwrien by Quentin G friends and colleagues to join. But users weren’t seeking out connections with the p

[Oct. ‘12 issue]
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Data
Science in
Traditional

Science

High energy physics - o

Large Hadron Collider

Astronomy -
Sloan Digital Sky survey

Science

SCIENCE IN THE
PETABYTEERA

Pre-dated commercial mining
Instrument generated

Large data sets often created by large teams not to
answer one Q but to be mined broadly

Often coupled to a physical/biological model
Interplay w/ experiments

Ecology
& Earth Sci.
- Fluxnet

Neuroscience -
The Human
Connectome Project

Genomics
DNA
sequencer

[Navarro et al. GenomeBiol. (19, in press)]
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» Scientific data often coupled to a physical/biological model

« Lauffenburger’s Sys. Biol. 4Ms: C_oup.ll.ng of
Measurement, Mining, Modeling & Manipulation Scientific Data

(Ideker et al.’06. Annals of Biomed. Eng.) tO MOdels &
» Weather forecasting as an exemplar .
. gas P o Experiments
- Physical models & simulation useful but not sufficient (“butterfly” effect)
— Success via coupling to large-scale sensor data collection

orizon!

sssssss
orrrn

«««««

Models + Data Mining

Forecasts

[Navarro et al.

GenomeBiol. (19, , ‘
in press)] Image from http://web.aibn.uq.edu.au/cssb/ResearchProjects.htm * :
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Biomed. Data science:

Scaling & Integration



Drivers of
Biomedical
Data
Science

* Integration
across data

types

%)
* Scaling §
=\

of individual
data types

[Navarro et al. GenomeBiol. (19, in press)]

Sadfjousud
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Case Study: Amazing Progress

in Scaling & Integration with

Genotype-Phenotype
Relationships

Integrated

health data
1000
Genomes UKBB study
Sequenced with over 500K
participants,
Genome Catalogue genotypes to
DOl{ble H of human phenotypic
Helix influenzae variation details &
clinical
Watson information

& Crick
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The Scaling of
Genomic Data
Science:

Powered by

exponential

increases in
data & computing

(Moore’s Law)

Cost per Raw Megabase of DNA Sequence

Moore's Law

$1

m) National Human Genome
Research Institute
$0.1

genome.gov/sequencingcosts
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Kryder’s Law and

S-curves
underlying
exponential
growth

* Moore’s & Kryder’s

Laws

- As important as the
increase in computer speed
has been, the ability to
store large amounts of
information on computers is
even more crucial

« Exponential increase
seen in Kryder'’s law
is a superposition of
S-curves for different
technologies
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Sequencing
cost
reductions
have
resulted in
an explosion
of data

* The type of
sequence data
deposited has
changed as well.
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The changing costs of a sequencing pipeline

= Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

l 100% _

-
TQ)

(Data reduction,

— '
High-level summaries
(VCF, Peaks, RPKM)

Downstream analyses

management

—
M, MRF)
eaks, RPKI

(differential expression, 0%~
novel TARS, regulatory Pre-NGS Now Future
G ba) (Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from

the actual seq. to sample
collection & analysis

[Sboner et al. ( “11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

100% _

i !

STQ)

Mapped reads
(BAM, CRAM, MRF)

-
c
1]
£
@
o
©
c
S
i~

= Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

(Data reduction,__,
— v —

High-level summaries
(VCF, Peaks, RPKM)

i 1

Downstream analyses

\

(differential expression, 0% =
novel TARs, regulatory Pre-NGS Now
networks, ...) (Approximately 2000)  (Approximately 2010)

Future
(Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from
the actual seq. to sample
collection & analysis

B Labor

3 Instrument depreciation and maintenance
Il Reagents and supplies

3 Indirect costs

[Sboner et al. ( “11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

= Sample

100% _

Sequencing

Data reduction

High-level summaries
(VCF, Peaks, RPKM)

€
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and .

Experimental experimental design
Sample
design
collection

Pre-NGS

Now

" Data reduction
W Data management

Downstream
analyses

Future

- -
(Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from

the actual seq. to sample
collection & analysis

[Sboner et al. ( ‘11), Muir et al. (‘15) Genome Biology]

Alignment algorithms scaling to keep
pace with data generation
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The changing costs of a sequencing pipeline

= Sample collection and Data reduction Downstream

Experimental experimental design I Seauencing M Data management O analyses 20 _Numbel" of Bioinformatics CS Faculty Positions
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[Sboner et al. ( ‘11), Muir et al. (“15) Genome Biology]
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A Success of
Scale & Integration:
Many GWAS

variants found,
most not in genes,
but affecting
regulatory network
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THE GENOME-WIDE TIDE

Large genome-wide association studies that involve more than
10,000 people are growing in number every year — and their
sample sizes are increasing.

Sample sizes: l More than 200,000 100,000-199,999
M 50,000-99,999 H 10,000-49,999

Cumulative study number
N
o
o

2008 2009 2010 2011 2012 2013 2014 2015 2016

A 1st GWAS done at Yale, for AMD:
(Klein et al. 05, Science)

* Many since then

* Most SNVs fall into non-coding

regulatory regions
(major contributions by Yale groups to this
ENCODE annotation effort)

[Nature 489: 91]
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 Large-scale ‘omics data
as an anchor to
organize phenotypic
data — EMRs,
wearables...

* 1st ['05-]: Exomes &
chips of disease-
focused cohorts — init.

~ GWAS, TCGA, PGC
fm, PCAWG

mmm”M e 2nd ['15-]: Integration of
full WGS with rich &

diverse phenotypes -

9 \ UKBIiobank, TopMed,
Genomics England,

PCAWG, All of Us

Basic Science to Medicine

2T lstsnorc

TCGAE

Genomics

INITIRTIVES

STARTUPS

Medical Big Data: Promise and Challenges (Lee and Yoon , Kidney Res. Clin. Pract., 2017)
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Biomed. Data science:

The Future



Our field as future Gateway —
Personal Genomics
as a Gateway into Biology

Personal genomes soon will become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Placing the
individual into
the context of
the population
&

using the
population to
build a
interpretative
model
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Exomes or Genomes)

Cumulative # of Structure

—_

-]
($]
|

10% 3

How will the Data Scaling Continue?
The Past, Present & Future Ecosystem
of Large-scale Biomolecular Data

Molecular
Structures

Seqgences
(Human WGS & /

1985 1990 1995 2000 2005 2010 2015
Year
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Trends in data generation point to growing opportunities for leveraging
sequence variants to study structure (and vice versa)

The volume of sequenced exomes is outpacing that of structures, while
solved structures have become more complex in nature.

4e+04 6e+04 8e+04 1e+05
| | | |
|
6

2e+04
|
(4eah yoeas 10} 9,01 dol) gad Jad suieyod # bay

Cumulative # of X-ray structures and # exomes

0e+00
l

1980 1990 2000 2010
Year

Exome data hosted on NCBI Sequence Read Archive (SRA) [Sethi et al. COSB (’15)]
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Growing sequence redundancy in the PDB (as evidenced by a reduced pace of novel fold
discovery) offers a more comprehensive view of how such sequences occupy conformational
landscapes — Gene & Struc. Families as main organizing principle

% Increase
0.15 0.20 0.25 0.30
| | | |

0.10
I

0.05
I

0.00
I

I I I I I I I I I I I I
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Year
PDB: Berman HM, et al. NAR. (2000)

CATH: Sillitoe I, et al. NAR. (2015)
[Sethi et al. COSB ('15)] SCOP: Fox NK et al. NAR. (2014)
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Examples of Imports & Exports to/from Genomics & Other Data
Science Application Areas

Cultural Imports

Technical Imports
P Importing CASP
Networks and graphs tech. CASptareet 51301
; developed  |**"

in other big

g the 5
L & ‘human

Technical Exports
Circos plot

E Am:yﬁ:_r

Education

-----------
...................

EIL‘"!L ) e iy
I Bl |  PeEE
B =S Pome S

What is The Art Genome Project? Seven Facts about th
Discovery and Classification System That Fuels Artsy

Tt AR GiNOWE PRONCE
BY MATTHEW ISRALL, JESSICA BACEUS AND OLIVIA JINE FAGON

[Navarro et al. GenomeBiol. (19, in press)]




Biomed. Data science:

The Course



Defining Bioinformatics
— by crowd-sourced
judgement

* Bioinformatics

- Related terms

 Biological Data Science

* Bioinformatics & / or / vs
Computational Biology

« Biocomputing
+ Systems Biology

+ Qbio
* Wh at a re Its Introductory Level
b oun d aries Advanced Level
- Determini ng the Undergraduate Level
"Support VeCtorS” Graduate Level
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Biomedical = (Molecular) BIOINFORMATICS
Data
Science

Data Mining

Sequence &
Genome Analysis

Other 'omic
& Network Analyses

Medical & Translational
Informatics

3D Structure Analysis

Systems Analysis

30 = Lectures.GersteinLab.org

[Luscombe et al. (01). Methods Inf Med 40: 346 ]



What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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Class Web Page

GersteinLab.org/courses/452
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Short Office Hours

Today right after class.

After that email me!

(in Bass 432,

contact.gerstein.info)
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