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Comparing Two Model Fits Y :

model 1
model 2

e The number of data points, N, must exceed the
number of model parameters, M, yielding the X
degrees of freedom (DOF = N-M)

* Increasing M using a more complex model will
generally improve the quality of fit and reduce
RSS

v

* An F-statistic can be computed to compare
the results of two model fits

— F ~ 1, the simpler model is adequate

— F > 1, the more complex model is better,
or random error led to a better fit with the
complex model

— P-value defines the probability of such a
“false positive” result (lookup in F table)

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



Building models with variable selection

F statistic determines if variable added or deleted from model

Backward Elimination

Other Variations:
<Start with all independeD
parameters in model Forward selection: adds
variables one at a time as
Compute F statistic and . .
p-value for each independent |« long as S1 gnlﬁc ant F teSt.
parameter in model

Stepwise procedure:
A .
bvale> o yes [Independent parameter with allows for removal of a
to remove removed from model
parameter at each step

A 4

No guarantee that globally optimal model with be found
(need all subsets, but prohibitive for large parameter space)



How much confidence to put in estimate?

Construct confidence intervals for model parameters
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Estimate uncertainty given limited number of experimental observations




Accuracy of Estimated Model Parameters

Underlying true set of model parameters (a,,.) known to
Mother Nature but hidden from the experimenter

« True parameters are statistically T [
realized as measured data set D, ———
data set D(l)i
}:yl othetical .‘
D@)
I:ypothetical !
‘ . D(3):

- Fitting D, yields estimated model parameters a ) ~ “onhomefemeole

» Other experiments could have resulted in data sets Dy, D,y), etc.
which would have yielded model parameters a;), a,), etc.

Estimate probability distribution of ;) - Ayye without knowing a,_



Monte Carlo Simulation of
Synthetic Data Sets

Assume that if ay, is a
reasonable estimate of
a, ., then the distribution

fitted
parameters
ag

actual xl
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of aj-a,p, should be similar to that of aj-ay.e

With the assumed 4, and some understanding of the

characteristics of the measurement noise, we can generate

synthetic
data set 4
DS(4)

(s)
ay

“synthetic data sets” T}, D°(),...  at the same x;
values as the actual data set, D(O), that have the same
relationship to a,, as Dy, has to a4,

For each D" ;, perform a model fit to obtain corresponding
as(j),.yieldi.ng one point. ‘.'S(j)' 0 for.simulating the desired
M-dimensional probability distribution. This is a very
powerful technique!!

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)

from Numerical Recipes online
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The Bootstrap Method

Estimating generalization error based on “resampling”:
Randomly draw datasets with replacement from training data

e Ifdon’t know enough about the measurement errors (i.e. cannot even say they
are normally distributed) so Monte Carlo simulation cannot be used.

* Bootstrap Method uses actual data set D,,), with its N data points, to generate
synthetic data sets T}y, D" ,),... also with N data points.

* Randomly select N data points from D, with replacement, which makes Ds(j)
differ from D, with a fraction of the original points replaced by duplicated
original points.

- Fitting the D5 data yields model parameter sets a°;, using actual
measurement noise.

If sample is good approximation of population, bootstrap method will provide
good approximation of sampling distribution of original statistic.




Bootstrap Methods

Randomly draw datasets with replacement from training data

e D=13.0,2.8,3.7,3.4,3.5] — average = 3.28

 Bootstrap samples Dy could be:
- [2.8,3.4,3.7,3.4,3.5] — 3.36
- [3.5,3.0,3.4,28,3.7] — 3.28
- [3.5,3.5,3.4,3.0,2.8] — 3.24
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3.28

If sample is good approximation of population, bootstrap method will provide
good approximation of sampling distribution of original statistic.



Bootstrapping Parameter Confidence Intervals

1) Fit model to data to obtain parameter estimates

2) Draw a bootstrap sample of the residuals (Fixed-X Bootstrapping)

3) Create bootstrap sample of observations by adding randomly sampled
residual to predicted value of each observation
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Bootstrapping observations also possible — asymptotically equivalent




Bootstrapping Parameter Confidence Intervals

Three commonly used methods: 1. Normal Theory Intervals, 2. Percentile
Intervals, 3. Bias Corrected Percentile Intervals

Percentile Intervals

Contains 95% of the estimates
Calculate the parameter for each —

bootstrap sample and select o (e.g., 0.05)
LCL = a. /2™ percentile.
UCL = (1-0/2)™ percentile.

Use MATLAB’s prctile function:
= prctile(bootstrap estimates, 0.025)

Bootstrap runs
—
(&)
o

Parameter estimates for synthetic data 50+
Estimate of s = 0.0017 [0.0009,0.0030] . N |
Estimate of p = 0.0099 [0.0095,0.0100] 0008 0.0 O entonrate () > 0012

May not have correct coverage when sampling distribution skewed




Practical reference for these kinds of methods

Numerical Recipes:
Includes source code for integration, optimization, etc.

The Art of

Scientific Computing Third Edition

TEACHING RESOURCE

COMPUTATIONAL BIOLOGY

Biomedical Model Fitting and
Error Analysis

Kevin D. Costa,'* Steven H. Kleinstein,?® Uri Hershberg*

www.SCIENCESIGNALING.org 27 September 2011 Vol 4 Issue 192

Free NR versions online at http://www.nr.com/oldverswitcher.html



Hepatitis C Viral Dynamics and Interferon-o. Therapy

Modeling 23 patients during 14 days of therapy (daily doses)

Hepatitis C Viral Dynamics in
Vivo and the Antiviral Efficacy
of Interferon-o Therapy

Avidan U. Heumann,*{ Hancy P. Lam,* |} Haral Dahari,
David B Gretch, Thelma E. Wiley, Thomas |. Layden, 5
Alan 5. Perelson
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Viral loads exhibit short
delay followed by biphasic
decline in viral load

Loy, HOCW RNA egiml

7
days

How does interferon therapy work?




Model of Hepatitis C Viral Dynamics

Includes virus along with target (T) and infected (I) cells

Infection rate

Target Cells dT/dt = s —dT _________ ‘7 ( 1)
Infected Cells dl/dt = ______ 9 — o/ (2)
Virus (HCV RNA) d I/’f‘ {{ — }) [ — o V

(3)

Before therapy, virus load 1s approximately constant




Model of Interferon-o. Therapy

Includes virus along with target (T) and infected (I) cells

Target Cells dT/dt = s —dT — BVT (1)

Infected Cells dl/dt

BVT — oI (2)

Virus (HCV RNA) dV/dt

pl — ¢V (3)

Therapy can reduce the rate of infection, or production of virions




Hepatitis C Viral Dynamics and Interferon-o. Therapy

Modeling 23 patients during 14 days of therapy (daily doses)

Infected cell death

. : IniEtial \.-'.L Delay Virien clearance (c) Efficacy (=) (5] Pr-:-gducriuf:n
Regimen Patient (10° copies thours) (10 copies
per milliliter) (1 day] + error Percent + error (1 day) =+ error per day)
1 A LG g8 5.9 1.1 il 4.0% 0 0o 445
1 E 1.9 = L) 1.8 75 7.0% 012 oz 280
1 C 14.2 MR MR R MR R
1 (] 7.1 MR MR MR MR MR
1 E 1.1 11 7.0 0.6 8o 1% 032 Qo4 125
1 F 6.5 T 5.0 0.8 g% B.0% 0 001 a0l
1 G 33 MR MR MR MR MR
1 H 4.1 10 0.9 0.2 i 1.0% [ o 498
1: Mean + 5D REE 40 9x 1.5 62* 08 81 8% 0. = 014 402 £ 191
2 A &1 7 3.8 0.2 = 0.5% 0.2 001 410
z E 16.7 Q Gl 0.3 Qg 04% RE 1409
2 C 8.6 a8 6.8 0.8 QG 1.0% 0.1 Qo3 1089
2 (] 1.0 Fi 5.6 0.5 a5 1.0% 0.6 004 a2
2 E 59.0 10 1.2 0.6 Qa7 001% Q.07 oz 12181
F F 109 Fi 4.4 a1 QG 09% .04 0o Qg5
2 ] 23.8 7 4.8 0.1 a2 0E% RE 1780
z H 27 Q 7.9 1.0 Q5.3 02% ML 324
2: Mean + 5D 16.1 £ 1849 ax+1 63+ 24 95 + 4% 01 = 005 2282 *+ 4045
3 A 6.7 8 37 0.3 097 04% 0.2 004 405
3 3 41 1 9.5 3.7 a1 2.0% 0.11 0.03 761
3 C 5.8 13 ST 0.7 Qg 0.5% ML 523
3 (] 0.4 5 G0 0.8 Qo0 0.2% 0.4 Qos 42
3 E 183 7 Gl 0.9 ar.s 1.6% RE 2136
3 F 1.1 14 5.8 0.6 Qi 3% 0.33 Qo3 112
3 ] &0 MR MR R MR R
3: Mean + 5D G0+59 a5+ 35 61+ 19 05 + 4% 024 + Q.15 663 = 769
All: Mean +5D 04+ 124 87 +23 6.2+ 18 it 0.14 + 0.13 1276 + 408

Average virion production rate of 1.3x10!? virions per day



Hepatitis C Viral Dynamics and Interferon-o. Therapy

Modeling 23 patients during 14 days of therapy (daily doses)
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Suggests immune
control has
important role in
lowering viral load

Patients with undetectable HCV after 3 months of therapy
(filled symbols) had significantly faster cell death rates




Major impact on understanding HIV/AIDS

HIV-I protease inhibitor given to twenty infected patients in order to
perturb the balance between virus production and clearance.

ARTICLES

Rapid turnover of plasma virions and CD4
lymphocytes in HIV-1 infection

David D. Ho, Avidan U. Neumann |, Alan S. Perelson’, Wen Chen,
John M. Leonard’ & Martin Markowitz

Aaron Diamond AIDS Research Center, NYU School of Medicine, 455 First Avenue, New York, New York 10016, USA
* Santa Fe Institute, Santa Fe, New Mexico B7501, USA

+ Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

| Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA

Treatment of infected patients with ABT-538, an inhibitor of the protease of human immuno-
deficiency virus type 1 (HIV-1), causes plasma HIV-1 levels to decrease exponentially (mean
half-life, 2.1+ 0.4 days) and CD4 lymphocyte counts to rise substantially. Minimum estimates
of HIV-1 production and clearance and of CD4 lymphocyte turnover indicate that replication of
HIV-1 in vivo is continuous and highly productive, driving the rapid turnover of CD4 lymphocytes.
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We believe our new kinetic data have important implications for
HIV-1 therapy and pathogenesis. It 15 self evident that, with
rapid turnover of HIV-1, generation of viral diversity and the
attendant increased opportunities for viral escape from thera-
peutic agents are unavoidable sequelae'”™", Treatment strategies,
if they are to have & dramatic ¢linical impact, must therefore be
initiated as early in the infection course as possible, perhaps even
during seroconversion. The rapid turnover of HIV-1 in plasma
also suggests that current protocols for momitoring the acute
antiviral activity of novel compounds must be modified to focus
on the first few days following drug initiation. Our interventional

Viral dynamics applied to a wide variety of systems



The SIR Model of Epidemics

Model for many infectious diseases including measles

000

c Susceptible
dS 2 Removed/Recovered
—=-[81 3
dt ]
dl c
dt 5
dR 2 Infectious
=l
dt

Time

Other versions allow recovered individual to be re-infected



Will the infection spread?

The basic reproductive ratio: R,

average number of secondary cases caused by an infectious
individual in a totally susceptible population

R, :éxS(O)
U

R, < I: disease dies out
R, > I: disease can invade

Proportion of population

0.8

0.67

0.4

0.2-

] u
R=10/ |

Susceptible
R N, Infectious

"‘:‘ﬂly H‘l \ \\\

\"\Ro='5 AN

I IS \ .
| A ~

\f'
|
\ A
\

R, indicates whether population at risk from disease




“Flattening the Curve”

“Social distancing” increasing the physical space between people
to avoid spreading illness (decreases R,)

# of Without
cases Protective HEE'“'IGEI'E system capacity

Measures

Time since first case
Adapted from CDC / The Economist

https://www.nytimes.com/2020/03/11/science/coronavirus-curve-mitigation-infection.html

Preventing a surge that would inundate the healthcare system




Examples of R, for Diseases

COVID-19 VS OTHER DISEASES

Estimates suggest the COVID-19 coronavirus is less deadly than the related
illnesses SARS or MERS, but more infectious (R,) than seasonal influenza.

BO srecerernnninnnnndd I ...... Fes ) Ebola ............
D) s ivenmesamsiv e s R TR S
MERS
o G—0 @ D
S 30.......Avian flu A(H7N9)
=
=
k:
B D) dsartimrisbontiltiatessssisthinivunsinssadasmalieevaviosvarsitss sulisassandatatibuve boss Suseinvastsussuste
@©
O
& ® Tuberculosis
1O e SARS & @ e
COVID-19
$€aS0Nal flU  Que® g 1918 pandemic flu A(HIN1)
0 1 2 3 4 5 6

Basic reproduction number (R,)

https://www.nature.com/articles/d41586-020-00758-2

Does R, > 1 guarantee spread of infection?



ODEs are deterministic

Predicts epidemic even with non-zero chance that disease dies out

Probability of disease
extinction following
introduction of 1 case.

6 stochastic epidemics
with R,=3.
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Proportion of population

Probability of extinction
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=
-
ma
w
.
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Time Ru

Stochasticity =2 risk of disease extinction when number of cases
is small, even if R>1.

Simulate using stochastic approach — Gillepsie Method




Stmulating Stochastic Models

How can we generate random number stream(s)?

A MILLION

Random Digits

WIiTH

100.000 Normal Deviates

RAND 1955

amazon.com Hello, Steven Kleinsts

Steven's Amazon.com 4 ¥ Today's Deals | Gifts & VWish Lists | Gift Cards

Books

|| Search

=in, We have recommendations for you. (Not Steven?}

Books Advanced Search

Browse Subjects New Releazes Bestsellers The New “ork Times® Bestzelers

click to LOOK |N5|DE|

A MILLION

Random Digits

tov.ope Normal Deviates

RAND

A Million Random Digits with 100,000 Normal Deviates [Paperback]

BAND Corporation (Author)

214 customer reviews)

ce: $81.01 & this item ships for FREE with Super Saver Shipping. Details

You Save: $8.99 (10%)

In Stock.

Ships frem and scld by Amazon.com. Gift-wrap available.

Only 1 left in stock--order soon (more on the way)

almost perfect

Such a terrific reference work! But with so
many terrific random digits, it's a shame
they didn't sort them, to make it easier to
find the aone wou're looking for.

Published on October 26, 2006 by a curious reader

Now we have algorithms to generate random # streams



Pseudo-Random Number Generators (PRNGs)

Starting with the same seed will give you equivalent stream

Uniform deviates: [0,1)

Linear congruential generator Fast, but sequential calls can be

correlated, so not used much

Iiy1 =alj+c (mod m)

I, 1s the seed (common to use system clock) Better approach

Mersenne Twister
(period 219%%7-1)

[,,,= 31,+7 (mod 10)

Produces: 6,5,2.3

Period: time before stream repeats itself
(maximum m)

Be careful on computer clusters (streams can be correlated):
Check out the “parallel” package in R



Simulating from other distributions

Transformation Method: indefinite integral of p(y) must be known and invertible

mmiforn & - oo oL L
deviate in

Fy) :_i_:_pl'}'i-[f.t'

X

—py)

transformed
deviate out

Transformation to generate exponential distribution (Poisson process)

: In [Uniform(O,l)]

Exponential(a) = -—
o

Methods based on underlying ability to generate uniform distributions




Boolean Network Models

Logical modeling
Can be useful where kinetic parameters are not sufficiently known

» A directed graph (network)
* Nodes represent the elements of a system
* Edges represent regulatory relationships between elements

» Nodes characterized by True/False state
» Network with N nodes will have 2N possible states

« As time passes, node state determined by the states of

neighbors, through a rule called a transfer function
* Eg, logical function using the operators NOT, AND, OR
* Output of transfer function determines state of the node

Often matches biological intuition: eg, genes are on/off.




Boolean Network Models

Qualitative approach
Can be useful where kinetic parameters are not sufficiently known

(d)
time 1s discrete,
D,

specifying instances in
@ which the state of the

? @ nodes may change

+= NOT D AND B
B*=AOR C
Cr=4
D*=BAND ©

—O--0-0
o=

e P el - - O |- | S|

---:::‘UE C:'G-C.‘-'j?,'

—-E:P-C:IEIII
alalelelo

= |olo|a|Q

0000

Courrant Opimon in Microbiclogy

(Thakar and Alberta, 2010)

Easy to model combinatorial regulatory relationships



Boolean Interaction Network of Immune Response

Can be useful where kinetic parameters are not sufficiently known

Recnited
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n
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h |
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TO celleta Thl ool & T cofle ta Th2 cells

Active phagocytes
Fhagocyiase
w baciana

= Dendrac colls T-

Thakar J., et.al. (2007) PloS CB

Future states of each node decided by transition rules using Boolean operators




ODEs Neglect Spatial Structure

Several approaches to including spatial effects

e Partial Differential Equations (PDEs)
* Allows quantities to vary over both space and time
* Continuous and deterministic
« Compartment Modeling
* Compartments assumed to be well-mixed
* Elements present in each compartment tracked using ODEs.
* ODEs incorporate coupling between compartments
* Agent-Based Modeling (ABM)
* object-oriented, discrete-event, rule-based, stochastic
* views system as an aggregation of components (agents) that
follow 1ntrinsic rules of behavior (agent-rules)

“Right” approach depends on question, and available data




Cellular Automata Models

A regular grid of cells, each in one of a finite number of states

A classic example is Conways Game of Life based on the following rules of
occupancy of 8 surrounding cells :

. g

.,
-

Birth: A dead cell with | i | @) In all other cases, a
exactly three live 00 .—' cell dies or remains
neighbors becomes a live _"‘= dead (overcrowding or
cell (birth). ' loneliness).
L@ | [ @

0 ® || le) 8l o [®
@ O | © e [ee
| @ 1] e
E . i . A live cell with two . P :
EE e | | or three live $ | | =
I _ neighbors stays alive O !
! i@ | (survival). - L

(John Parkinson)

Gosper's Glider Gun

A new generation 1s created (advancing t by 1), according to some fixed rule
(generally, a mathematical function) that determines the new state of each cell in
terms of the current state of the cell and the states of the cells in its neighborhood.




Agent-based Models (ABMs): IMMSIM

Individual cells given unique properties: receptors and internal state

A computer model of cellular interactions in

the immune system
Franco Celada and Philip E. Seiden

Immunology Today  §@ Vol 13 No. 2 1992

Antigen 198 218

e Gy

i

Rece
MHC 137

Endocytosis

R
E >

B l‘

Peptide 218

(Kohler et al, 2000)

study immune receptor signal-based cellular behavior with a bit-string

representation for receptor specificities




Detailed spatial pattern formation

Realistic models of cell diffusion and response to chemokines

New 1intravital imaging techniques provide underlying data




Range of Current Modeling Frameworks

Various types of computational models can be built

Table 1 Computational approaches and tools for systems biology
Modeling approach Typical applications Limitations Tools
Individual particle- Small subcellular signaling Applies only to small systems (in terms | MCell (32), Smoldyn (314),

based stochastic

processes, aspects of
bacterial biochemistry

of space and chemical complexity)

ChemCell (315), GetBonNie
(nonspadal) (49)

Particle number
stochastic

Signaling processes with
important stochastic aspects
(due to small system size or
high sensitivity)

Applies only to small systems (in
terms of space and chemical
complexity), has less detail than
individual particle simulation

MesoRD (35), SmartCell (33),
GetBonNie (nonspatial)

Concentration-based
spatial, nonstochastic

Cellular signaling processes
with important spatial
aspects

Provides either high spatial resolution
or biochemical complexity, has no
stochasticity

Virtual Cell (37), Simmune (36)

Concentration-based,
nonspatial,
nonstochastic

Cellular signaling processes
without spatial aspects

Assumes global biochemical
homogeneity in the simulated system

Copasi (46), E-cell (44),
Cellware (45), Systems
Biology Workbench (47),
GetBonNie

(Germain et al, 2010)

Each method has advantages and limitations — no one right approach.




Interchange format for computer models

XML encoding: wide variety of models can be described

gBM |_.Dr‘g The Systems Biology Markup Language

l | €<Txm]l wversion="1.0" encoding="UTF-8"7>

) | <stml xmlns="http://wew.sbul .org/sbal/levell” A software package can read in a
3 level="1" version="2"> .
4| <model name="geme_network model"> model expressed in SBML and
3 <list0fUnitDefinitions> Lo, . .
6 e translate it into 1ts own internal
7 </11st0fUnitDefinitions>
B Stiibmatas format for model analysis.
10 </list0fCompartments>
11 <lizt0fSpecies> <list0fReacticns>
12 jea <reaction name="R1" reversible="false">
13 <f;istﬂf5pecies> <list0fReactants>
i% sdiatiflarnebere <species Refersnce species="src" />
J S ,
</lis 8>
16 </listOfParameters> {’1? ;E;REE“E‘DE
17 <1list0fRules> L rOhG e _ ]
18 o <species HReference species="RNAP"/>
19 </1listOfRnles> </1ist0fProducts>
0 <listO0fReacticns> <kineticlaw formla="Vi/(1+P/Ki)}"™ />
21 L Tra </reaction>
22 </1ist0fReactions>
23 </model>
24 | </sbml> </1ist0fReactions>

Still, most researchers develop models from scratch for every project




Repository of mathematical models

BioModels (http://www.biomodels.org)

Two branches W Logical [ Constraint-based ODE
V] Manually curated

[¥] Non curated
Model formats

650

[ SBML

B CellML 452 561 600
g Matlab 450
Modelling approaches 3 300
M Ord.mary Differential Equation <5l 10 150
[¥] Logical ~

0

[¥] Constraint-based Manually curated
[] Non curated

750

Still, most researchers develop models from scratch for every project
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PLOS COMPUTATIONAL BIOLOGY

Message from ISCB

Getting Started in Computational Immunology

Steven H. Kleinstein*®

Interdepartmental Program in Computational Biclogy and Bioinformatics, and Departrment of Pathology, Yale University School of Medicine, New Haven, Connecticut,
United States of America

TEACHING RESOURCE Cell

COMPUTATIONAL BIOLOGY

- - - - H f?
Biomedical Model Fitting and Soiving Immunology?
E A I " Yoram Vodovotz,! Ashley lX\a,'”" Elizabeth L. Read,’ .
Josep Bassaganya-Riera,” David A. Hafler,> Eduardo Sontag,”
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“ y . s
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www.SCIENCESIGNALING.org 27 September 2011 Vol 4 Issue 192

Feel free to email me with questions:
steven.kleinstein@yale.edu




