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Measuring the Impact of Non-coding Mutations:
Repurposing an Additive Effects Model & Developing New Annotations

- Additive-Effects model to

measure the Impact of non-

coding v coding mutations

Repurposing a formalism from germline
genetics for missing heritability to cancer

Using it to assess the overall Impact of
passengers v drivers, non-coding vs
coding, distal vs proximal non-coding

Notable effect, particularly for non-coding
passengers, in addition to known coding
drivers.

Recasting as a predictive model
to est. number of weak drivers

* New Annotations to help

assess the impact non-coding
variants

« RADAR Prioritization for RBP sites

Prioritizes variants based on post-

transcriptional regulome using ENCODE
eCLIP

Incorporates new annotation features
related to RNA sec. struc & tissue specific
effects

* UOREF Perioritization

Feature integration to find small subset of
upstream mutations that potentially alter
translation




Measuring the Impact of Non-coding Mutations:
Repurposing an Additive Effects Model & Developing New Annotations

 Additive-Effects model to

measure the Impact of non-

coding v coding mutations

Repurposing a formalism from germline
genetics for missing heritability to cancer

Using it to assess the overall Impact of
passengers v drivers, non-coding vs
coding, distal vs proximal non-coding

Notable effect, particularly for non-coding
passengers, in addition to known coding
drivers.

Recasting as a predictive model
to est. number of weak drivers

* New Annotations to help
assess the impact non-coding
variants

 RADAR Prioritization for RBP sites

* Prioritizes variants based on post-

transcriptional regulome using ENCODE
eCLIP

* Incorporates new annotation features
related to RNA sec. struc & tissue specific
effects

* UuOREF Prioritization

* Feature integration to find small subset of
upstream mutations that potentially alter
translation




Relating Germline Missing Heritability to Cancer Studies

Subclonal trait in cancer:
Growth rate
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Population level definitions:
Parent-offspring heritability;
Twin-based heritability ...

Organismal trait: Height
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SNP-based polygenic & additive model:
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Conceptual extension of the
canonical model of drivers and passengers
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Using additive effects to compare different

categories of variants
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Overall additive variance increase for multiple cancer

cohorts in PCAWG with the inclusion of passengers

additive variance explained
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Increase in the
variance from ~50%
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to ~59% with
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across all cohorts.

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



Element level additive variance for multiple cancer
cohorts in PCAWG, comparing coding & non-coding

additive variance explained
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Recasting the additive effects model in a predictive context:
Best Linear Unbiased Predictor (BLUP) analysis

Cummulative

Additive variance

SNVs, ordered by descending BLUP (u):

SNVs added

l

J

|

BLUP predictor:
i = argmax, (P (uly, 62))

= argmax, (P(y|u)P(u|c?))

Lower bound on # weak drivers (8.4 pan-cancer average; enriched for PCAWG genes w/ FDR<0.25)

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]
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Schematic of RADAR Scoring
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HOT region s

F u n Se q .gersteinlab.org Sensitive region [

Polymorphisms

| ] | |
E Genome [ ] |

wa = 1 + palogpa + (1 = pa)log, (1 = pa)

* Info. theory based method (ie
annotation “surprisal”) for weighting
consistently many genomic features

* Practical web server

» Submission of variants & pre-
computed large data context from
uniformly processing large-scale
datasets

[Fu et al., GenomeBiology ('14)]
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Co-binding of RBPs form biologically relevant complexes

Literature supported RBP complexes
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Visualization of RADAR Features and Scoring

Germline Variants are Score Using a
Universal Scoring Scheme

Input Variants

eCLIP
GERP
Motif
ni .l 1 ! b Universal Score
M » > e + Gene
::: :: ' v lll: |I l: - - eCLIP

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]



Visualization of RADAR Features and Scoring
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Upstream open reading frames (UORFs) regulate
translation are affected by somatic mutation

5’ UTR main coding sequence 3’ UTR polyA !
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ARAAAA coding regions.
uORF uORF ‘ . . .
[Calvoetal, PNAS (09)] e This regulation may be altered by somatic
Fegieln® mutation in cancer.
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ribosome profilng labeled uORFs

From a “Universe” of
1.3 M pot. uORFs

The population of functional uORFs may
be significant

Eg;acjli:pizlvusci)zfzn — & ribosome profiling labeled UORFs

known population size

high false negative rate high false positive rate

all uORFs

all uORFs

Ribosome profiling experiments have
low overlap in identified uORFs.

This suggests high false-negative rate,
and more functional uORFs than
currently known.

[McGillivray et al., NAR (‘18)]



Prediction & validation of
functional uORFs using 89 features

e All near-cognate start codons predicted.

e (Cross-validation on independent ribosome
profiling datasets and validation using in vivo

protein levels and ribosome occupancy in
humans (Battle et al. 2014).
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A comprehensive catalog of functional uORFs

unlabeled Opredicted positive

Universe of 1 .3M

uORFs scored via
Simple Bayes algo.

e Predicted functional uORFs may be intersected
with disease associated variants.

[McGillivray et al., NAR (‘18)]
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