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Estimated numbers of new cases of invasive cancer in
the United States in 2019 by sex and cancer type

Estimated New Cases

Males Females

Prostate 174,650 20% Breast 268,600 30%
Lung & bronchus 116,440 13% Lung & bronchus 111,710 13%
Colon & rectum 78,500 9% Colon & rectum 67,100 8%
Urinary bladder 61,700 7% Uterine corpus 61,880 7%
Melanoma of the skin 57,220 7% Melanoma of the skin 39,260 4%
Kidney & renal pelvis 44,120 5% Thyroid 37,810 4%
Non-Hodgkin lymphoma 41,090 5% Non-Hodgkin lymphoma 33,110 4%
Oral cavity & pharynx 38,140 4% Kidney & renal pelvis 29,700 3%
Leukemia 35,920 4% Pancreas 26,830 3%
Pancreas 29,940 3% Leukemia 25, 860 3%
All Sites 5'297_0 100% All Sites 591 480' 100%

P

1,762,450 new cases per year

~4.,800 new cases per day
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the WHITE HOUSE  goiepINGROOM  ISSUES ~ THE ADMINISTRATION 1600 PENN

PRESIDENT BARACK OBA

Much Interest
THE PRECISION MEDICINE INITIATIVE in Precision

Oncology

 Analysis of the exact
somatic mutations in a
individual
 Highlighting key
mutations

 Targeting treatment

- What if matching
PRECISION MEDICINE INITIATIVE PRINCIPLES STORIES a Cancer Cu re to

“Doctors bave always recognized that every patient is unique, and doctors bave always tried to tailor their treatments as our qenetlc COde
best they can to individuals. You can match a blood transfusion to a blood type — that was an important discovery. What if was iust as easv

matching a cancer cure to our genetic code was just as easy, just as standard? What if figuring out the right dose of medicine
was as simple as taking our temperature?” https://obamawhitehouse.archives.g

ov/blog/2016/02/25/precision-
medicine-health-care-tailored-you

- President Obama, January 30, 2015
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Overall Problem:
AN YOU FIND THE PANDA?

Finding Key Variants in S T A e e o
Personal Genomes Mir- e e\ b)) LR o

IR

Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few .
high-impact variants are associated with disease . geli#-

- . :
..........

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “functional” variant amongst many in LD



Overa" PI"Oblem: CAN YOU FIND THE PANDA?
Finding Key Variants in S T NN ) g e )y g
Personal Genomes EEN

Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few
high-impact variants are associated with disease

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “functional” variant amongst many in LD

Thus: Need to find & prioritize high impact variants.
Particularly hard for non-coding regions.
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Canonical model of drivers & passengers in cancer

:x
. k
Drivers A
directly confer a selective growth advantage to healthy k*
y g g genomes A
the tumor cell. % . . .
A typical tumor contains 2-8 drivers. — : .
cancer A
genomes | : :
identified through signals of positive selection. :x e
x: — —
Existing cohorts of ~100s give enough power
to identify :: | :
Random :* .
Passengers expectation .
Conceptually, a passenger mutation has no x:
direct or indirect effect on tumor progression. } .
strong neutral

There are 1000s of passengers in a typical
cancer genome.

drivers

passengers

[Vogelstein Science 2013. 339:1546]
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most comprehensive resource for

PCAWG

Project Goals:

cancer whole genome analysis

regions of cancer genomes in
disease progression.
Union of TCGA-ICGC efforts

» To understand role of non-coding
genome tumor/normal pairs

+ Jointly analyzing ~2800 whole
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Adapted from Campbell et. al., bioRxiv ('17)
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A case study: pRCC ‘ﬁ%‘
» Kidney cancer lifetime risk of |

1.6% & the papillary type (pRCQC)

microRNA 1

counts for ~10% of all cases Copy number 2

DNA methylation 2

« TCGA sequenced 161 exomes ,,,..m"
Copy number 1

& classified them into subtypes crPhs I

microRNA 2 I

« 35 WGS of TN pairs IMI.I . ;

L | ll;. 11 I|”||| | |”liilIII I
e Ll ||'|‘Mﬂ H-I..W T

No. of Cases 9 | 22 .

RPPA 1
microRNA 4
mRNA 3

Histologic Type Stage of Tumor
Type 1 PRCC Type 2 PRCC | m
M Unclassified PRCC m m

[Cancer Genome Atlas Research Network N Engl J Med. (*16) |
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(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building

Background Mutation Models, Analyzing Tumor Evolution & Evaluating the Overall Impact of Passenger Mutations

* Intro

PMI & Variant Prioritization;
driver-passenger model

Data source: PCAWG
comprehensive WGS on >2.5K
+ focus on 35 pRCC WGS

« ENCODEC Annotation

ENCODE cancer resource,
with TF & RBP networks

Cell-space view of TN pairs

FunSeq variant impact
measurement integrates
conservation & network
centrality

 Network Rewiring

Highlights regulators that
change targets greatly

LDA approach (from text-
mining) finds those that greatly
change their gene communities

- BMR: LARVA/MOAT

« Overall Impact of Putative

 Tumor Evolution:

Passengers
+ Not just high & low impact dichotomy

Uses parametric beta-
binomial model, explicitly
modeling genomic
covariates

+ How the fraction of high-impact SNVs scales &

_ relates to survival
Non-parametric shuffles.

Useful when explicit
covariates not available.

Differences betw. Impact of early & late
passenger mutations (eg in TSGs & oncogenes)

- Differential Impact of Signatures

Classification +

+ Diff. burdening of TF sub-networks naturally

Driver identification

results from mutational spectra & signatures

differentially affecting binding motifs.

Intro: Mutational timing & + High & low impact mutations assoc. w/ diff.
tree topology classifies signatures
pRCC subtypes

« How it all relates to selection?
Identifying drivers from

perturbations in VAF - Additive Effects Model
spectra from a single .
tumor (using many

hitchhiking mutations to
gain statistical support)

To quantify aggregated effect of passengers.
Demonstratable effect, particularly for non-coding
ones, in addition to known drivers.

+ Recasting as a predictive model
to est. number of weak drivers
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[Alexander et al., Nat. Rev. Genet. ('10)]

Non-coding Annotations: Overview

Features are often present on multiple "scale” (eg elements and connected networks)

Sequence features, incl. Conservation

Large-scale sequence
similarity comparison

Functional Genomics

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

/

Identify large blocks of
repeated and deleted

| sequence:

Signal processing of raw
experimental data:

» Removing artefacts
» Normalization
» Window smoothing

—— =
C——
I— -

h
1
i
/

» Within the human
reference genome

'

» Within the human
population

» Between closely related

mammalian genomes

Segmentation of processed
data into active regions:

+ Binding sites

» Transcriptionally active

'

regions
'

—
V. N

Identify smaller-scale
repeated blocks using
statistical models

Group active regions into
larger annotation blocks

e .
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BIOSAMPLE st

= ASSAY

Chromatin
Accessibility

Histone
Modification

Transcription

RNA-binding

t Proteins

RNAI/CRISPR
Knockdown

3D Chromatin
Structure

Enhancers

Methylation
Replication
Timing

Transcription
Factors

Cell Line
wWGs

4 ENCODE Resource
V¥ External Resource

8 CACARE Comertmmembe

ENCODEC

&

http://encodec.encodeproject.org/

86 Cancerous (40 Cancer Types) + 143 Composite Normal (inc. Roadmap)

9
& £ ®
©L£L° &

CML | LIHC | LUAD | BRCA | Cervix| ESC | COAD+READ | PAAD PRAD LUAD | SARC | LAML
DNase-seqg | ¢ | ¢ ([ ¢ & o o | o6 o o o o o o *
HistoneChiP-seq | 19 14 8 16 14 5| 3 16 7 1| 11| 11| 8 | 11| 19 || encooe *Deﬂﬂ‘r’n‘ﬁf'g?’:fafﬂi?“
RNA-seq | ¢ | ¢ & & o o |V o & Vv o |V Vv Vv o
RAMPAGE | &
eCLIP | 197 164
shRNA/siRNA KD | 326 257 2
CRISPR KD/KO | 108 19
ChIA-PET | 9 2 5 1
H-C|VY | & & | v o Vv
STARR-seq ¢ o * Proximal  gep mediated
WGBS | ¢ & & |V o o
RRBS [ & (& o o o o ® o o0 o0 A A A ~Figtoraric
Repli-chip o o .O. ® >~ o .. ® AAAAAA Hierarchy
Repli-seq ¢ ¢ ¢ ¢ o
TF ChIP-seq | 558 300 240 149 78 89
____________ s_ |;|;/“ v v v | v
SV | v v v v

[Zhang et al. (‘20), biorxiv + Nat. Comm. (in press)]



Finding "Conserved” Sites in the Human Population:

Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1
Broad Categories
Coding E H

Genomic Avg i

Enhancer .
=ncer [ Broad categories of
(Non-coding RNA) "°RNA- regulatory regions under
(DNase | hypersensitive sites) DHS i negative selection

(TFSS: Sequence-specific TFs) Related to:

(Transcription factor binding sites) TFBS ENCODE, Nature, 2012
" i Ward & Kellis, Science, 2012
| Chromatin Mu ot al, NAR, 2041

Pseudogene r—u
]

- [ § \ \ x ]
056 058 060 062 064 066 068

Fraction of rare SNPs

Depletion of Common Variants
in the Human Population
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A

GenomicAvg 27M SNPs |

TFBS

Synonymous | 0.12M

Coding 0.27M

>
Missense | 0.15M

Enhancer Y

General

Chromatin WY

'
Pseudogene | 57K —
> ,

Broad Categories

0.56 0.6

Fraction of rare SNPs

Sub-categorization possible

Specific Categories

TF Families (motifs)

Coding
HMG
Forkhead

050 055 060 065 0.70

because of better statistics from

1000G phase 1 v pilot

Differential
selective
constraints
among specific
sub-categories

[Khurana et al., Science (‘13)]
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Top Layer: Master regulators, regulating
others more than being regulated

AANAAAAAGAAAL : _
mﬁé\{h AN \/A\ALA\A iN:

AA N AN I
AAAAAAN/ B/\A AN
Target Expression

Correlation

\ Bottom Layer: follower regulators, being
regulated more than regulating others

Target Expression
Correlation

How much power each regulator has in
driving tumor-normal differential expressions

TF-RBP crosstalk Transcription %romoted | Exon | Intron = Exon |

TF-RBP regulate the same ‘
gene at different levels Post-transcription Bon | Bxon | AMAAA

[Zhang et al. (‘20), biorxiv + Nat. Comm. (in press)]



Power-law distribution

Hubs Under Constraint:

log P(k) ?,.O ..
>
(&
C
5 . ° Hub
8 % High likelihood of
bt [ ] .o .
L O positive selection
D Lower likelihood of
o ® positive selection
-—
log(Degree) &k

* More Connectivity, More Constraint: Genes & proteins that have a more central
position in the network tend to evolve more slowly and are more likely to be
essential.

* This phenomenon is observed in
many organisms & different kinds of networks

-yeast PPI - Fraser et al ('02) Science, .
('03) BMC Evo. Bio.

-Ecoli PPI - Butland et al ('04) Nature
-Worm/fly PPI - Hahn et al ('05) MBE
-miRNA net - Cheng et al ('09) BMC Genomics

@)

A Finding from the Network
Biology Community

Not under positive
selection

No data about
positive selection
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Funseq: a flexible framework to determine
functional impact & use this to prioritize variants

Annotation (tf binding
sites open chromatin,
ncRNAs) & Chromatin

Dynamics

Conservation
(GERP, allele freq.)

Mutational impact
(motif breaking, Lof)

Network (centrality
position)

%-- == 1000 Genomes variants

Non-coding annotation

,, , ’? m ® SNV W Indel
N o

\l l I |

| \

[ \

[ \

[ \

|| |

Degree of negative selection

Sensitive Ultra-Sensitive

[ | \
A |T A T ' ‘ Motif disruptive score
m e

Motif
breaking [ \ | /
| | oW
\
\ Degree of network centrality
Enhancer/

Promoter [ ‘
1 1 I

, Khurana et al., Science ('13)]

[Fu et al., GenomeBiology ('14),
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E Genome [ ] |

HOT region s

F u n Se q .gersteinlab.org Sensitive region NN

Polymorphisms

wa = 1 + palogopa + (1 = pa)log, (1 = py)

Info. theory based method (ie
annotation “surprisal”) for weighting
consistently many genomic features

* Practical web server

» Submission of variants & pre-
computed large data context from
uniformly processing large-scale
datasets

[Fu et al., GenomeBiology ('14)]
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Stemness PC

Clustering of ENCODE Biosamples

Gene Expression Proximal Network Distal Network
Normal 266 z| 2 P=004 Normal 156 Normal 99
. Turmor 49 S P-006 P-019 Tumnor 46 ? Tumor 22
.. © Stem-like 14 o - - © Stem-like 5 . o°9% ! © Stem-like 13
o . .
i Lung N 2 8 —;— T .
3 e’ 8| © ! !
- E i
. 7 :
‘s Ll o T
il £l 2-
k=3
5 .
2 ! i
el |
fle 1
Y N
% o 7SG N/A Oncogene
Shoe
& o Knockdown Target

Oncogene Knockdown

Stemness PC

[Zhang et al. (‘20), biorxiv + Nat. Comm. (in press)]



(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building

Background Mutation Models, Analyzing Tumor Evolution & Evaluating the Overall Impact of Passenger Mutations

* Intro

PMI & Variant Prioritization;
driver-passenger model

Data source: PCAWG
comprehensive WGS on >2.5K

+ focus on 35 pRCC WGS

« ENCODEC Annotation

ENCODE cancer resource,
with TF & RBP networks

Cell-space view of TN pairs

FunSeq variant impact
measurement integrates
conservation & network
centrality

* Network Rewiring

Highlights regulators that
change targets greatly

LDA approach (from text-
mining) finds those that greatly
change their gene communities

- BMR: LARVA/MOAT

« Overall Impact of Putative

« Tumor Evolution:

Passengers
* Not just high & low impact dichotomy

Uses parametric beta-
binomial model, explicitly
modeling genomic
covariates

+ How the fraction of high-impact SNVs scales &

_ relates to survival
Non-parametric shuffles.

Useful when explicit
covariates not available.

Differences betw. Impact of early & late
passenger mutations (eg in TSGs & oncogenes)

« Differential Impact of Signatures

Classification +

+ Diff. burdening of TF sub-networks naturally

Driver identification

results from mutational spectra & signatures

differentially affecting binding motifs.

Intro: Mutational timing & + High & low impact mutations assoc. w/ diff.
tree topology classifies signatures
pRCC subtypes

* How it all relates to selection?
Identifying drivers from .
perturbations |n VAF ® Addltlve EffeCtS MOdeI

spectra from a single .
tumor (using many

hitchhiking mutations to
gain statistical support)

To quantify aggregated effect of passengers.
Demonstratable effect, particularly for non-coding
ones, in addition to known drivers.

* Recasting as a predictive model
to est. number of weak drivers



¥

Normal network

Tumor network

109 Transcription Factors (TF)
A

Usually <5k target genes (10%)

B A T

B C D E F . I G K [ | ees |50k
|

) 50k target genes
Metabolic pathway Cell cycle pathway p53 signaling pathway

Network rewiring
analyses: key cancer-
associated regulator
identification through
network comparisons

[Zhang et al. (‘20), biorxiv + Nat. Comm. (in press)]
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De-noising process by dimension reduction

109 Transcription Factors (TF)

FromTF — gene (109%50,000)

ORORO, to TF — pathway (109x50)
Hidden Layer
O @ @ (50 biological pathways?)

A B C D E F G | G K L | eee |50k q
l i . Challenge: how to define

i

50k target genes appropriate pathwaYS?
Cell cycle pathway p53 signaling pathway

[Zhang et al. (‘20), biorxiv + Nat. Comm. (in press)] Lectures.gersteinlab.org



Automatic gene topic identification
based on Latent Dirichlet Allocation

TF — gene network

109 Transcription Factors (TF)

N <

@ﬂ!@ﬂggmmamnmm

50k target genes
Cell cycle pathway p53 signaling pathway

[Zhang et al. ('19), biorxiv.org]

Latent Dirichlet Allocation

Documents

@ Prior info

0. to%ic distribution per document

Topics (Z)

@ Prior info

@: word distribution per topic

Words (W)
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Mutation recurrence
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Noncoding
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violation of the constant mutation rate assumption

mut. rate. per Mbp
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[Lochovsky et al. NAR (*15)]

mutation rate changes across tumor

within one tumor type

> mutation rate changes across patients

within one tumor type
within one patient

mutation rate changes across regions

within one tumor type
within one patient

mutation rate changes with many covariates

inappropriate models

Bad data fitting

Inaccurate burden test results



Cancer Somatic Mutation Modeling

PARAMETRIC MODELS

» Suppose there are k genome

Model 1: Constant Background
Mutation Rate (Model from
Previous Work)

x; + Binomial(n;,p)

elements. For element /, define:
— n;: total number of nucleotides

— x;: the number of mutations within the
element

Model 2a: Varying Mutation Rate
with Single Covariate Correction

x; + Binomial(n;,p;)

Di * Beta(,u|RL-,a|Ri)

,u|Rl-, O'|RL- : constant within the same
covariate rank

— p: the mutation rate
— R;: the covariate rank of the element

» Non-parametric model is useful
when covariate data is missing for
the studied annotations

+ Also sidesteps issue of properly

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction
x; + Binomial(n;,p;)

p; ¢ Beta(/,t|Ri,a|Ri)

u|Rl~, 0|Rl- : constant within the same
covariate rank

identifying and modeling every
relevant covariate
(possibly hundreds)

[Lochovsky et al. NAR (*15)]

Assume constant background
mutation rate in local regions.

Model 3a: Random
Permutation of Input

Annotations
Shuffle annotations within local

region to assess background
mutation rate.

Model 3b: Random
Permutation of Input Variants
Shuffle variants within local
region to assess background
mutation rate.

[Lochovsky et al. Bioinformatics in press]
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MOAT-a: Annotation-based permutation

% annotation

permutations

| = original variants

>

RN A g g [} U R U

[Lochovsky et al. Bioinformatics (‘17)]
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MOAT-v: Variant-based Permutation
% annotation

Can preserve tri-nt context in shuffle | = original variants
Similar to "Sanger” approach in PCAWG .

permuted variants
bin width W

I
I
I
&
I
I
I
T

[Lochovsky et al. Bioinformatics (‘17)]
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MOAT-s: a variant on MOAT-v

* A somatic variant simulator

« Given q[set of input variants, shuffle to new locations, taking genome structure into
accoun

+ Like “Broad” approach in PCAWG | = original variants

= permuted variants

Binning whole genome
I | I | I ] I [ |

Marking equivalence classes (bins with similar covariate vectors)

Overlaying variants (with tri-nucleotide indexing)

I I I | I | | I |

- 2. 2 333 33 4444444 55 6 7
Shufflingvariants =~ " T |
| B S S 5 o —
2 § a4 43 344 434M3 4 2 6 5 7
443

[Lochovsky et al. Bioinformatics (‘17)]
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LARVA Model Comparison

« Comparison of mutation count frequency implied by the binomial model (model 1) and the
beta-binomial model (model 2) relative to the empirical distribution

» The beta-binomial distribution is significantly better, especially for accurately modeling
the over-dispersion of the empirical distribution

—6— empirical
@, beta—-binomial
S /o'°°\ —6— binomial
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Al / / 0%
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o °/° o/ on%%"
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o g o 3 "9000000g0
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mutation counts

[Lochovsky et al. NAR (*15)]

37 -



LARVA Results

QA _—e— observed-bottom 10% ¥
TSS LARVA reSU|tS ™ |~e—~ beta-binomial-bottom 10% /°
~—~ O _|=e— binomial-bottom 10% °
8 ¥ |~ observed-top 10% P
@ PRRC2B S oo - beta-binomial-top 10% A°
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noncoding annotation
p-values in sorted order

123 45 6 7 89 G | 13 15 17 19 21
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[Lochovsky et al. NAR (15)]
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(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building

Background Mutation Models, Analyzing Tumor Evolution & Evaluating the Overall Impact of Passenger Mutations

* Intro

PMI & Variant Prioritization;
driver-passenger model

Data source: PCAWG
comprehensive WGS on >2.5K

+ focus on 35 pRCC WGS

« ENCODEC Annotation

ENCODE cancer resource,
with TF & RBP networks

Cell-space view of TN pairs

FunSeq variant impact
measurement integrates
conservation & network
centrality

* Network Rewiring

Highlights regulators that
change targets greatly

LDA approach (from text-
mining) finds those that greatly
change their gene communities

- BMR: LARVA/MOAT

« Overall Impact of Putative

« Tumor Evolution:

Passengers
* Not just high & low impact dichotomy

Uses parametric beta-
binomial model, explicitly
modeling genomic
covariates

+ How the fraction of high-impact SNVs scales &

_ relates to survival
Non-parametric shuffles.

Useful when explicit
covariates not available.

Differences betw. Impact of early & late
passenger mutations (eg in TSGs & oncogenes)

« Differential Impact of Signatures

Classification +

+ Diff. burdening of TF sub-networks naturally

Driver identification

results from mutational spectra & signatures

differentially affecting binding motifs.

Intro: Mutational timing & + High & low impact mutations assoc. w/ diff.
tree topology classifies signatures
pRCC subtypes

* How it all relates to selection?
Identifying drivers from .
perturbations |n VAF ® Addltlve EffeCtS MOdeI

spectra from a single .
tumor (using many

hitchhiking mutations to
gain statistical support)

To quantify aggregated effect of passengers.
Demonstratable effect, particularly for non-coding
ones, in addition to known drivers.

* Recasting as a predictive model
to est. number of weak drivers



Tumor Evolution: Highlight the Ordering of Key Mutations

Normal MRCA
cell

A

Distant
metastasis
Time point X: Time point Y:
+ Driver mutations diagnosis and distant and
treatment initiation  local relapse

>
Time

Yates et al, NRG (2012)
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Construct evolutionary trees in pRCC

» Infer mutation order and tree structure based on mutation
abundance (PhyloWGS, Deshwar et al., 2015)

- Some of the key mutations occur in all the clones while others
are just in some parts of the tree

DNMT3A: premature stop KDME6A: missense
NEATT: noncoding
SMARCA4: missense

0.2 Mutation
G distance

Germline

Population
(%)

Mutation

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)]
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Tree topology correlates with molecular subtypes

Type 1 Type 2 Unclassified

21)122|23|24|25(26(27(25|29(30(31(32(33(34(35
Y T

Histological type/Patient 1D
coca

Copy number gain
Somatic mutation

Splicing event

Germline mutation
BAP1/PBRM1/SETD2 mut.
CDKN2A copy number loss -
SDHB deletlon

Promoter mutation

1-2 intronic mutation

NEAT1 somatic mutation
[ERRFI1 promoter mutation
Whole genome mutation rate
DHS mutation percentage
SV number

Evolution tree topology N/

\ ¢ Long branches I
. Aftected I:IU"E‘"“‘“ |:| NA - INo branch, less subclone

GOCA

. 21 D CZa . Czb
Mutation rate/percentaqe/SV number
. Higgh D Medium |:| Low

MET

Coding

CTHs

Nonceoding
OTHs | MET

Rutaticn

Pro:

[Li et al., PLOS Genetics (‘17)]
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Modelling the frequency of “generational” hitchhikers in a fitness population

No Fitness mutation Generational (g-)hitchhik —
> = O b wm BE22E582
- b—
: 16/64 | Fitness mutation f 7 64/120 ?g?%g
g — 8/64 y — 16/120
I g=— 8120
YV I
J|eles|EE aess | PPPP
i
L e e
o ‘ I avatata
Ly e
} Ay A
IR R . I\ S8
T T U N B T U N NN
| | \ \ | | I \ \ \ \ \ ,
(] ] (T ] ] : ] ] [T [T
t, ot t, T t, t tf?= t, Tt T

—r(tg+ ti—
e Tltg+t m)X(Ntot—fd(T_ti) XNtot

i /fd(T,ti) XNtot)+ fd(T,ti) XNtot= . ’fd(T,ti) XNot

Ntot

where f3(T, t;) is the frequency of the putative driver i occurring at time t;.

Mutational frequencies under
neutral growth

32/64

-_—

t t t T

Generation time

Mut. frequency

Hitchhiker frequencies increased
due to fitness mutation

fe(T, t,) = 88/120

Cell growth without fitness mutation

EXTRA Cell growth WITH fitness
mutation

Generational Time re-optimization parameter

[Salichos et al. ('20, in press) Nat. Comm.]



Modeling scalar effect k on growth rate r based
on VAF perturbations to g-hitchhikers

For k=1 (neutral model) For k=2 (fitness mutation double growth)
57 |
§ | | fg(T ty) = = 88/120 7
8 1 f(T, t)=721120
= | 32/64 I
5
= / ]
. T — T . |
tb try tg T . tb y tfgz ’E1

Generatlon time

t,=T+,

Generation time

,
} }} }:'62
Final 0 Final
e | e g ‘
N a a
t

b ry 9

Use ~150 g-hitchhikers
to find growth rate r

and effect k from
aperturbed VAFs

Generational time of mutational occurrence

[Salichos et al. (20, in press) Nat. Comm.]



Determining tumor growth in low coverage tumors
with known and unknown drivers

Averaged and point growth progression
for a low coverage CNS oligo-tumor

0.008
average 0.006* PCAWG

PCAWG PCAWG
growth r 4 Driver Driver Driver
perbin  0.004
(200 muts) \
0.002 \’\*—\
N
0 ——— S
0 500 1000 1500 2000 2500
-0.002
mutations ordered from earliest to latest
Growth peaks andtumor progression in low coverage CNS-oligo tumor
002 Z-pcawG CAWG e PCAWG
0015 Driver Driver Driver
= 0.01
e
s 0.005 e
2 0
S}
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—Positive growth  — Negative Growth *—Pcawg drivers

Averaged and point growth progression for a
low coverage thyroid adenocarcinoma tumor

0.006
positive growth

0.004 positive growth

0.002

150
-0.002

20,004 negative growth

mutations ordered from earliest to latest

0.02 Growth peaks andtumor progression inlow coverage thyroid adenocarcinoma tumor
0.01

0 WW

|

L i s e e Rl ol i Lt i e it i
ONOTOUNDOTMOONDTOONDOTOONDT-OONDTMONDT OWN® T
001 == NANNNDOOOOFTFFTTOOOON OGO O©ONNNNNDD0 00D

= Periods of positivegrowth  ===Periods of negative growth

[Salichos et al. ('20, in press) Nat. Comm.]



a

0.8

Average
growth r 06
per bin 0.4

(200 muts)
0.2
0
-0.2
-0.4

b

0.020

“
< 0.015

=

Q

>
0.010
0.005
0
-0.005
-0.010

Application to an Ultra-Deep sequenced AML tumor

Averaged (200 mut. per bin), normalized growth (r/r_ ) for
AML deep-sequenced tumor
IDH1 FLT3 1DH2
Pos\five growth
Positive glowth
QQQQQ QQQQQQQQQQQQQ
DRI <b° S W S P P
Neg ative g rowth ordered mutations (early == late)
MP3K1 Growth rate r for AML deep-sequenced tumor
intron
FLT3 W Known drivers
, IDH1 . .
ST G ,*'DH? Driver candidates
COL18A
o
o
o
m
o o
g J S
b ordered mutations (early s late)

[Salichos et al. ('20, in press) Nat. Comm.]



(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building

Background Mutation Models, Analyzing Tumor Evolution & Evaluating the Overall Impact of Passenger Mutations

* Intro

PMI & Variant Prioritization;
driver-passenger model

Data source: PCAWG
comprehensive WGS on >2.5K

+ focus on 35 pRCC WGS

« ENCODEC Annotation

ENCODE cancer resource,
with TF & RBP networks

Cell-space view of TN pairs

FunSeq variant impact
measurement integrates
conservation & network
centrality

* Network Rewiring

Highlights regulators that
change targets greatly

LDA approach (from text-
mining) finds those that greatly
change their gene communities

- BMR: LARVA/MOAT

« Overall Impact of Putative

« Tumor Evolution:

Passengers
* Not just high & low impact dichotomy

Uses parametric beta-
binomial model, explicitly
modeling genomic
covariates

+ How the fraction of high-impact SNVs scales &

_ relates to survival
Non-parametric shuffles.

Useful when explicit
covariates not available.

Differences betw. Impact of early & late
passenger mutations (eg in TSGs & oncogenes)

« Differential Impact of Signatures

Classification +

+ Diff. burdening of TF sub-networks naturally

Driver identification

results from mutational spectra & signatures

differentially affecting binding motifs.

Intro: Mutational timing & + High & low impact mutations assoc. w/ diff.
tree topology classifies signatures
pRCC subtypes

* How it all relates to selection?
Identifying drivers from .
perturbations |n VAF ® Addltlve EffeCtS MOdeI

spectra from a single .
tumor (using many

hitchhiking mutations to
gain statistical support)

To quantify aggregated effect of passengers.
Demonstratable effect, particularly for non-coding
ones, in addition to known drivers.

* Recasting as a predictive model
to est. number of weak drivers



5'... ?

Conceptual extension of the
canonical model of drivers and passengers

fPee 90
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all variants in cancer
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~2500 whole genomes |
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N

negative
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alternate

terminology

"background mutation"

T
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[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]
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Overall functional impact

distribution of
PCAWG mutations

1.0

0.8

0.6

0.4

probability density

0.2

M 1 M 1 M 1
0 1 2 3 4 5
functional impact score

» Funseq molecular functional impact
of ~30M variants
in >2500 PCAWG samples

Lymph-CLL
1.00
0.75
0.50
0.25 - |
0.00
0 25'00. 5000 7500
time (days)

Division of PCAWG Lymph-CLL
cohort based on average impact of
non-driver variants (high v low)

[A result of selection?]

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]
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In many PCAWG cohorts, the fraction of impactful “passengers’
decreases with increase in total mutation burden
(A result of selection?)

- slope + siope
< |
8 4 CNS-Medullo
c I iunAAdenaCA — — — — _
o , @ '
‘5 0.030- | T
O
O v 6 |
‘-E = I Eso-AdenoCa @ significant trend
|
O 0.025- > o
= o ' .
© Skin-Melanoma
B o] 4— |
S S L __ o ©
€ 0.020- I Lung-AdenoCA
= =1 Kidney-RCC
q"a -r% 2 ® Ovary-A.denoCA
m ™\
g‘ 0.015- ColoRect-AdenoCA ~ CNS-GBM
= T T T T 1 _ O
30 35 40 45 50 0 o~ O0©X© o
. | | | I |
mutation count (log-scale) .0.004 -0.002 0.000 0002 0.004
coefficient

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]
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passengers

high impact coding

drivers

loss of function

medium impact
non-coding
medium impact
coding

high impact
non-coding
high impact
coding

DNA repair
oncogenes
tumor suppressor
apoptosis
cell cycle

cancer pathway

immune response

later mutation | earlier mutation

06 08 1 12 14 16 1.8 2.0

early mutations

late mutations

Sub-clonal
architecture of
mutations in
PCAWG

As expected, drivers are enriched in
earlier subclones. Overall, no such
enrichment among passengers.

High impact passengers are slightly
enriched among early subclones
(weak drivers?)

Particularly, passengers in tumor
suppressor (in contrast to oncogenes,
which require specific mutations).

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]

53 = Lectures.GersteinLab.org



0.38

0.36

Early vs Late (mean VAF)
"
B

e
w
N

0.30

— @ driver variants
— @ non-driver variants in driver genes Py
— @ variants in non-driver genes

Functional Impact (GERP score)

Continuous
correlation of
functional
impact & VAF

Among mutations in driver genes:

higher impact mutation

Still true after removing all known
driver variants from driver genes.
(Latent drivers?)

Outside driver genes:
higher impact mutation
(Deleterious passengers?)

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]
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(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building

Background Mutation Models, Analyzing Tumor Evolution & Evaluating the Overall Impact of Passenger Mutations

* Intro

PMI & Variant Prioritization;
driver-passenger model

Data source: PCAWG
comprehensive WGS on >2.5K

+ focus on 35 pRCC WGS

« ENCODEC Annotation

ENCODE cancer resource,
with TF & RBP networks

Cell-space view of TN pairs

FunSeq variant impact
measurement integrates
conservation & network
centrality

* Network Rewiring

Highlights regulators that
change targets greatly

LDA approach (from text-
mining) finds those that greatly
change their gene communities

- BMR: LARVA/MOAT

« Overall Impact of Putative

« Tumor Evolution:

Passengers
* Not just high & low impact dichotomy

Uses parametric beta-
binomial model, explicitly
modeling genomic
covariates

+ How the fraction of high-impact SNVs scales &

_ relates to survival
Non-parametric shuffles.

Useful when explicit
covariates not available.

Differences betw. Impact of early & late
passenger mutations (eg in TSGs & oncogenes)

« Differential Impact of Signatures

Classification +

+ Diff. burdening of TF sub-networks naturally

Driver identification

results from mutational spectra & signatures

differentially affecting binding motifs.

Intro: Mutational timing & + High & low impact mutations assoc. w/ diff.
tree topology classifies signatures
pRCC subtypes

* How it all relates to selection?
Identifying drivers from .
perturbations |n VAF ® Addltlve EffeCtS MOdeI

spectra from a single .
tumor (using many

hitchhiking mutations to
gain statistical support)

To quantify aggregated effect of passengers.
Demonstratable effect, particularly for non-coding
ones, in addition to known drivers.

* Recasting as a predictive model
to est. number of weak drivers



Mutational processes carry context-specific signatures

Birth
0

ll15 — >

A[C>TIG | -=
N CIC>TIG| |«

AL

I— T T
\\

Cancer
initiation

y 4

Time (years)

\

/

i

/

[

&
1
o
2l
/

[ |
= |
[

Ongoing mutational

processes

C>A C>G C>T

..’.J..J.J

T>A T>C

20% Signature 1

Historical mutationfl processes

/

20% Signature 4

10%

0%||[]|‘|"|||‘||||...||.m...|..l|..|I.|n.|.. '

T>G

S: Mutation signature

a = e ——
Trry < .
i e inferred
£y i
4 3 @ LY J E'S
T T ‘4 f- o2
\ A 7- rr A T

/ Final mutational portralt \\*3!/

M=SxW+¢

g.]

% © -

=0 it ||I||I‘III|||’|

M: Mutation spectrum
observed
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Mutations/MB

0.00 0.05 0.10 0.15 0.20 0.25

Kidney cancer as an example: differential burdening
correlates with mutational spectrum

all mutations (N=923,782)
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57 = Lectures.GersteinLab.org



# mutations
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Signatures and molecular

Impact of passengers:
ex of pRCC

Underlying mutational processes are
stochastic but unevenly distributed,
which can potentially explain the
differential burdening of various
genomic elements.

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]
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Differential Mutational burdening of TF-subnetworks
due to SNVs breaking & creating binding sites
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Signature differences between high- and low-impact
passengers

Uterus-AdenoCa

Stomach-AdenoCa ‘ .

Skin-Melanoma

Panc-AdenoCa .. . .

Ovary-AdenoCa
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Signature diff

>100%
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43%
23%
4%
-16%

-35%

-55%
-74%
-94%

Differing mutational processes
could potentially explain the
divergence of functional impacts
among putative passengers.

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]
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Mutational processes and fitness

* Mutational process dynamics exhibit common patterns in some cancer types
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From:

Dentro, S.C., Leshchiner, ., Haase, K., Tarabichi,
M., Wintersinger, J., Deshwar, A.G., Yu, K.,
Rubanova, Y., Macintyre, G., Vazquez-Garcia, .
and Kleinheinz, K., 2018. Portraits of genetic
intra-tumour heterogeneity and subclonal
selection across cancer types. bioRxiv.



Mutational processes and fitness

* Do mutational processes have effects on fitness? %
* Not necessarily: primarily determine mutations in ' '

next generation, rather than number of offspring | Parent Sftoprin

epigenetic inheritance

* Mutational processes may have fitness effects over multiple generations

Coarse-
graining

=)

X  genotype
M mutational processes

* We develop a framework for cyclic and multilevel causation in evolutionary processes
Warrell, J., and Gerstein, M. Cyclic and Multilevel Causality in Evolutionary Processes. bioRxiv (accepted in Biology and Philosophy)



(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building

Background Mutation Models, Analyzing Tumor Evolution & Evaluating the Overall Impact of Passenger Mutations

* Intro

PMI & Variant Prioritization;
driver-passenger model

Data source: PCAWG
comprehensive WGS on >2.5K

+ focus on 35 pRCC WGS

« ENCODEC Annotation

ENCODE cancer resource,
with TF & RBP networks

Cell-space view of TN pairs

FunSeq variant impact
measurement integrates
conservation & network
centrality

* Network Rewiring

Highlights regulators that
change targets greatly

LDA approach (from text-
mining) finds those that greatly
change their gene communities

- BMR: LARVA/MOAT

« Overall Impact of Putative

« Tumor Evolution:

Passengers
* Not just high & low impact dichotomy

Uses parametric beta-
binomial model, explicitly
modeling genomic
covariates

+ How the fraction of high-impact SNVs scales &

_ relates to survival
Non-parametric shuffles.

Useful when explicit
covariates not available.

Differences betw. Impact of early & late
passenger mutations (eg in TSGs & oncogenes)

« Differential Impact of Signatures

Classification +

+ Diff. burdening of TF sub-networks naturally

Driver identification

results from mutational spectra & signatures

differentially affecting binding motifs.

Intro: Mutational timing & + High & low impact mutations assoc. w/ diff.
tree topology classifies signatures
pRCC subtypes

* How it all relates to selection?
Identifying drivers from .
perturbations |n VAF ® Addltlve EffeCtS MOdeI

spectra from a single .
tumor (using many

hitchhiking mutations to
gain statistical support)

To quantify aggregated effect of passengers.
Demonstratable effect, particularly for non-coding
ones, in addition to known drivers.

* Recasting as a predictive model
to est. number of weak drivers



Missing heritability and polygenicity

Population level definitions:
Parent-offspring heritability;
Twin-based heritability ...

Subclonal trait in cancer:
Growth rate

et
=g

Organismal trait: Height

— —
N H~

Offspring
S

Parent
Time \

SNP-based polygenic & additive model:

XB + 7 u + ¢ Tumor sample taken
h* = %u / / \ \

Trait Covariates & Genetic predictors Environmental noise
fixed effects & random effects




Additive effects model to quantify cumulative effect of
nominal passengers in PCAWG

¢ Model for the effect of an individu ® @ weakdriver
SNPona phenotype cancer /\ deleterious passenger

9
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[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



Using additive effects to compare different

categories of variants

b

cancer
genomes

non-cancer
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r 9
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effect size
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drv

Model:  Yj = Utz

e
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Parameters: (of,03,0%,04,0F) k = 2: coding other

k = 3: promoters
k = 4: other non-coding

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



Overall additive variance increase for multiple cancer

cohorts in PCAWG with the inclusion of passengers

additive variance explained

0.81

0.6 1

0.4+

0.2-

drivers

drivers
+
passengers

cancer type

@ Pancreas-AdenoCA
© Skin-Melanoma

@ Ovary-AdenoCA

@ Liver-HCC

@ Breast-AdenoCA

@ Kidney-RCC

© Prostate-AdenoCA
@ CNS-Medullo

® pancancer

Increase in the
variance from ~50%
using drivers alone
to ~59% with
putative passengers
included, averaged
across all cohorts.

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



Element level additive variance for multiple cancer
cohorts in PCAWG, comparing coding & non-coding

additive variance explained

0.8 !
o o— | gal
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+
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additive variance explained per snv

0.012;

0.010+

0.008+

0.006 -
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0.0021

0.00-

cancer type

® Pancreas-AdenoCA
© Skin-Melanoma

@ Ovary-AdenoCA

@ Liver-HCC

@ Breast-AdenoCA

® Kidney-RCC

© Prostate-AdenoCA
@ CNS-Medullo

® pancancer

coding promoters other n.c.

In addition to
coding
mutations,
promoter &
other non-
coding
mutations
contributed
significant
amounts of extra

variance
(~2% & 7%) .

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



Recasting the additive effects model in a predictive context:
Best Linear Unbiased Predictor (BLUP) analysis

Cummulative

Additive variance

SNVs, ordered by descending BLUP (u):

SNVs added

l

J

|

BLUP predictor:
i = argmax, (P (uly, 62))

= argmax, (P(y|u)P(u|c?))

Lower bound on # weak drivers (8.4 pan-cancer average; enriched for PCAWG genes w/ FDR<0.25)

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building

Background Mutation Models, Analyzing Tumor Evolution & Evaluating the Overall Impact of Passenger Mutations

* Intro

PMI & Variant Prioritization;
driver-passenger model

Data source: PCAWG
comprehensive WGS on >2.5K

+ focus on 35 pRCC WGS

« ENCODEC Annotation

ENCODE cancer resource,
with TF & RBP networks

Cell-space view of TN pairs

FunSeq variant impact
measurement integrates
conservation & network
centrality

* Network Rewiring

Highlights regulators that
change targets greatly

LDA approach (from text-
mining) finds those that greatly
change their gene communities

- BMR: LARVA/MOAT

« Overall Impact of Putative

« Tumor Evolution:

Passengers
* Not just high & low impact dichotomy

Uses parametric beta-
binomial model, explicitly
modeling genomic
covariates

+ How the fraction of high-impact SNVs scales &

_ relates to survival
Non-parametric shuffles.

Useful when explicit
covariates not available.

Differences betw. Impact of early & late
passenger mutations (eg in TSGs & oncogenes)

« Differential Impact of Signatures

Classification +

+ Diff. burdening of TF sub-networks naturally

Driver identification

results from mutational spectra & signatures

differentially affecting binding motifs.

Intro: Mutational timing & + High & low impact mutations assoc. w/ diff.
tree topology classifies signatures
pRCC subtypes

* How it all relates to selection?
Identifying drivers from .
perturbations |n VAF ® Addltlve EffeCtS MOdeI

spectra from a single .
tumor (using many

hitchhiking mutations to
gain statistical support)

To quantify aggregated effect of passengers.
Demonstratable effect, particularly for non-coding
ones, in addition to known drivers.

* Recasting as a predictive model
to est. number of weak drivers



(Topics in) Cancer Genomics: Annotating Non-coding Variants, Measuring Regulatory Network Rewiring, Building

Background Mutation Models, Analyzing Tumor Evolution & Evaluating the Overall Impact of Passenger Mutations

* Intro

PMI & Variant Prioritization;
driver-passenger model

Data source: PCAWG
comprehensive WGS on >2.5K
+ focus on 35 pRCC WGS

« ENCODEC Annotation

ENCODE cancer resource,
with TF & RBP networks

Cell-space view of TN pairs

FunSeq variant impact
measurement integrates
conservation & network
centrality

 Network Rewiring

Highlights regulators that
change targets greatly

LDA approach (from text-
mining) finds those that greatly
change their gene communities

- BMR: LARVA/MOAT

« Overall Impact of Putative

 Tumor Evolution:

Passengers
+ Not just high & low impact dichotomy

Uses parametric beta-
binomial model, explicitly
modeling genomic
covariates

+ How the fraction of high-impact SNVs scales &

_ relates to survival
Non-parametric shuffles.

Useful when explicit
covariates not available.

Differences betw. Impact of early & late
passenger mutations (eg in TSGs & oncogenes)

- Differential Impact of Signatures

Classification +

+ Diff. burdening of TF sub-networks naturally

Driver identification

results from mutational spectra & signatures

differentially affecting binding motifs.

Intro: Mutational timing & + High & low impact mutations assoc. w/ diff.
tree topology classifies signatures
pRCC subtypes

« How it all relates to selection?
Identifying drivers from

perturbations in VAF - Additive Effects Model
spectra from a single .
tumor (using many

hitchhiking mutations to
gain statistical support)

To quantify aggregated effect of passengers.
Demonstratable effect, particularly for non-coding
ones, in addition to known drivers.

+ Recasting as a predictive model
to est. number of weak drivers
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