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Human Genetic Variation:
the prevalence of rare variants in population studies
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Rare (as opposed to common)
variant analysis particularly
applicable at the moment

e CMG rare-disease &
TCGA somatic variants

* Main NIH disease genomics projects

e Both focus on “rare” variant for which
GWAS is not meaningful

* For purpose of assessing impact &
aggregating “burden” across a gene,
somatic & germline rare can be considered
similar — no notion of LD

 Differences:
drivers under “cell-level” positive selection
while
Mendelian variants are under strong
negative selection from an organismal
perspective

Home ¥ GSP CCDG GSPAC GSPCC  NHGRI

Centers for Mendelian Genomics

The Centers for Mendelian Genomics (CMG) use genome-
wide sequencing and other genomic approaches to
discover the genetic basis underlying as many Mendelian
traits as possible, and accelerate discoveries by
disseminating the obtained knowledge and effective
approaches, reaching out to individual investigators, and
coordinating with other rare disease programs worldwide.

The currently funded CMG are: the Baylor-Hopkins CMG,
the Broad Institute CMG, the University of Washington
CMG, and the Yale University CMG. Please direct inquiries
about collaborations directly to the centers.

The CMGs contribute to the overall field of Mendelian
genetics which has been responsible for many disease
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Sharing

Mechanisms of Data Release
and Sharing

Latest Publications

+ Reads meet rotamers:
structural biology in the age
of deep sequencing.

« Pathogenetics of alveolar
capillary dysplasia with
misalignment of pulmonary
veins.

+ Recessive Inactivating
Mutations in TBCK,

Harmonized Cancer Datasets
Genomic Data Commo




Coding v Non-coding

» Coding
- Easily interpretable, particularly related to structure
- Available in large quantities

- Exomes have the current potential for great scale (Scale of
EXAC, >60K exomes [Lek et al. “16])

* Non-coding
- Not as interpretable & hard to connect to genes

* “Near coding”
- Bits of non-coding, close to genes & readily linked to them
- EX: Splice sites, promotors, uUORF



Fold Gene Function

Structure & genom iCS oucumancs  saann EoProssion S0

|
s
J
1

A B C D E F G H_ 1 K L M N O
] z
ol|3 2| | £ °
Sle| |E|8]2| (2|82
_ c| > [ -8 1 s|5|¢E
@ = < |z o | &8 g|e
£ g B 0| E e85 |2|g|3
S 3 SRR s|9s A
5 Sle|S|8|[S|E||2|ele||8|E]®
° <1515158| 8|9 |8|3|5||8[8|2
S s|5 s 5 ] 5
HIHHNEEEEIEH R HEEHEHEHE
> slulSladlr|< <|® (= KsH K] Eld|Z
Kinase (cat. core) 1 B - - -[-[- 8] - -] [FZ2] -
7-bladed beta-propeller 2 5 - 9| -
P-loop NTP hydrolases 3 2 - | [8]
g Alpha-alpha superhelix 4 6] - - 3
o4 =@ [TIM-barrel 5 1 e 8
T el Ferredoxin 6 N - | - 8
- G Leu-zip fold 7 - 19 6
ructure particularly useful for B — o)
A v Zn2-C6 DNA bind dom 9 - 7
T > F Alpha-beta Hydrolases 10 - [ -1 [sT19] [-1- 10

interpreting the impact of the many
rare variants whose effect can not J :
be found V|a GWAS Gerstein et al., Nat. Struct. Bio. 2000

GPCR Pharmacogenomics
funce;
ot x oot f ional si unﬂ"”’alefr
o genotypes from 1000 Genomes ":ca':“;':’?ndsi::es Scts
Project (2,504 individuals) Ggpmtein . . )

modification site (@) variant-disease
sodium pocket % associations
microswitches

Also, integration of structure data T T o e
with genomic variants, EHR & drug G
data will be key for realizing the 5 el

W A
2 F\

*,'w de novo mutations (5,286 individuals)

prescription and

sales data 11/2011 - 05/2017
5 approved

goal of precision medicine. ﬂ e

2016 £ sales volume
K. GPCR
targets,
21%
(£1.7 bn)

Assessing the spectrum, prevalence and functional impact

of genetic variation for alteration in drug response Hauser et al-, Ce” 201 8

5 - Lectures.GersteinLab.org



Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 1IIL)
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[Sethi et al. COSB ('15)]
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Computational analysis of variants: coding versus non-coding

Intro: types of variants - RADAR Prioritization for
« Rare vcommon, RBP sites
somatic v germline, coding v noncoding Prioritizes variants based on

post-transcriptional regulome
using ENCODE eCLIP

Incorporates new features

Identifying cryptic allosteric sites with STRESS

« On surface & in interior bottlenecks related to RNA sec. struc &
Frustration as a localized metric of SNV tissue specific effecfs
impact « UOREF Prioritization

Feature integration to find small

- Differential profiles for oncogenes v. TSGs ]
subset of upstream mutations

ALOFT: Annotation of LoF Transcripts that potentially alter translation
Using dynamics to help identify mutation - GRAM to assess the
clusters (Hotcommics) molecular effect of
- Find dynamic sub-communities & determine aggregated (promotor) mutations
mutational burden within these - Universal score + cell type

specific score
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Models of Protein Conformational Change

Motion Vectors from Normal Modes (ANMs)

PDBID: 3RFU Characterizing uncharacterized variants

Adapted from Fuglebakk et al, 2014 <= Finding Allosteric sites
<= Modeling motion
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Predicting Allosterically-Important Residues at the Surface

1. MCsimulations generate a large number of candidate sites
2. Score each candidate site by the degree to which it perturbs large-scale motions
3. Prioritize & threshold the list to identify the set of high confidence-sites

pdb 1J3H

e
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- density of candidate sites
m=1 i j

Surface region with low
density of candidate
sites

Adapted from Clarke*, Sethi*, et al (“16)
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Predicting Allosterically-Important Residues at the Surface

PDB: 3PFK

Adapted from Clarke*, Sethi*, et al (“16)
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Predicting Allosterically-Important Residues within the Interior

weight edges using
motion vectors
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Adapted from Clarke*, Sethi*, et al (“16)
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Predicting Allosterically-Important Residues within the Interior

B o e
Fo 380 L T ¢y = Covy 1 (@A)
D;;=—log(ICyl)

Adapted from Clarke*, Sethi*, et al (“16)

13-



Predicting Allosterically-Important Residues within the Interior

PDB: IXTT

Adapted from Clarke*, Sethi*, et al (“16)
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STRESS Server Architecture: Highlights
stress.molmovdb.org

EC2

STRESS a computationally-efficient framework for identifying potential allosteric residues at the protein surface and within the interior

Home Documentation Examples Download Citing

Thin front end EC2
H23 ) Queve)

\/

Submit a new job: Retrieve job results:

Enter PDB ID (ex: 3D3D}: Or upload PDB File: Job id: Retrieve EC2 R E STfu I
Choose File | Nofile chosen
storage

Select which :noﬂules to run: Auto—sca | a b I e
back-end

e Alight front-end server handles incoming requests, and powerful back-end
servers perform calculations.

e Auto Scaling adjusts the number of back-end servers as needed.
e Atypical structure takes ~30 minutes on a E5-2660 v3 (2.60GHz) core.

e Input & output (i.e., predicted allosteric residues) are stored in S3 buckets.

Adapted from Clarke*, Sethi*, et al (“16)
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Intra-species conservation of predicted allosteric residues
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Intra-species conservation of predicted allosteric residues
ExAC

Surface Interior
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Adapted from Clarke*, Sethi*, et al (“16)
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 1IIL)
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[Sethi et al. COSB ('15)]
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Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

Rationalizing disease variants in the context of allosteric behavior
with allostery as an added annotation

® @ Predicted allosteric (surface | interior)
® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 1IIL)
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Computational analysis of variants: coding versus non-coding

Intro: types of variants « RADAR Prioritization for
« Rare vcommon, RBP sites
somatic v germline, coding v noncoding » Prioritizes variants based on

post-transcriptional regulome
using ENCODE eCLIP

Incorporates new features

Identifying cryptic allosteric sites with STRESS

« On surface & in interior bottlenecks related to RNA sec. struc &
Frustration as a localized metric of SNV tissue specific effects
impact « UOREF Prioritization

« Feature integration to find small

+ Differential profiles for oncogenes v. TSGs _
subset of upstream mutations

ALoFT: Annotation of LoF Transcripts that potentially alter translation
Using dynamics to help identify mutation « GRAM to assess the
clusters (Hotcommics) molecular effect of
+ Find dynamic sub-communities & determine aggregated (promotor) mutations
mutational burden within these . Universal score + cell type

specific score
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[Ferreiro et al., PNAS ('07)]
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Workflow for evaluating localized frustration changes (AF)
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Complexity of the second order
frtlstration calculation

MD-assisted free energy calculation (AG)
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First order frustration calculation (F)

SWTT,

Accuracy
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[Kumar et al, NAR (2016)]

Comparing AF values across different
SNV categories: disease v normal

Loss of N N
ﬁusmuon
o — o
~—_
N N 4
l | |
Gain of ¥ <
‘Aslmlion !

©
T

1KG EXAC HGMD 1KG EXAC HGMD
Core residues Surface residues

Normal mutations (1000G) tend to unfavorably
frustrate (less frustrated) surface more than core,
but for disease mutations (HGMD)

no trend & greater changes
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[Kumar et al, NAR (2016)]

Comparison between AF
distributions: TSGs v. oncogenes

A TSG Drivers B Oncogene Drivers

@ ™ o
L © o4

a wo

<
J aE N A
v v
core surface core surface

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.
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Computational analysis of variants: coding versus non-coding

Intro: types of variants « RADAR Prioritization for
« Rare vcommon, RBP sites
somatic v germline, coding v noncoding » Prioritizes variants based on

post-transcriptional regulome
using ENCODE eCLIP

Incorporates new features

Identifying cryptic allosteric sites with STRESS

« On surface & in interior bottlenecks related to RNA sec. struc &
Frustration as a localized metric of SNV tissue specific effects
impact « UOREF Prioritization

« Feature integration to find small

+ Differential profiles for oncogenes v. TSGs _
subset of upstream mutations

ALoFT: Annotation of LoF Transcripts that potentially alter translation
Using dynamics to help identify mutation « GRAM to assess the
clusters (Hotcommics) molecular effect of
+ Find dynamic sub-communities & determine aggregated (promotor) mutations
mutational burden within these . Universal score + cell type

specific score



Variant Annotation Tool (VAT), developed for 1000G FIG

VCF Input

Output:

« Annotated VCFs

« Graphical representations of
functional impact on
transcripts

Access:

«  Webserver
« AWS cloud instance
- Source freely available

" Virtual Machine (VM) | |S3disabled  Scalable VAT User
Web Server / EC2 Instance i Local Disk Cloud Service I
VAT 1/0 | S3enabled i VM1 i
Executables Layer \:\ Input [t
I I Bucket [Tttt
: 1 VM2 ¥ Master
VAT Web Application | Output \I_________________-_:
Public HTML / API i Bucket : VMn E‘_.
___________________________ o L}
Graphical representation of genetic variants
| —— —
- ..
] - | e | S |
- ——
- -
| oo | mmn |

vat.gersteinlab.org

Habegger L.", Balasubramanian S.”, et al. Bioinformatics, 2012
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Complexities in LOF annotation

Impact of a SNP on alternate splice forms

— == Isoform 1
T, - (soform 2

TAﬂec(s only Isoform 1

Transcript isoforms,

distance to stop, Case 1
functional domains,

protein folding,

Isoform 1
etc. Reference
_- Isoform 2

Balasubramanian S. et al., Genes Dev., ‘11 l'\"eﬂs both isoforms
Balasubramanian S.*, FuY.* et al.,, NComms.,’17
Case 2 : Isoform 1
—- Isoform 2
SLC2A2 ¢
1KG ENSTO00000469787 m— e |
_— 1

ENST00000497642 H————IEEEEEE —n
HGMD N — -— 1

S T '

ENST00000314251
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Annotation of
Loss-of-Function
Transcripts (ALoFT)

Runs on top of VAT
Output:

e Impact score: benign or deleterious.
e Decorated VCF.

Balasubramanian S.*, FuY.* et al.,, NComms.,’17

Input
VCF file

!

Annotate pLoF variants
with variant and transcript specific features

Mismapping

Segmental duplication;
pseudogene; paralog

Annotation Issue

Non-canonical splice site;
LoF position...

( Functional )

NMD prediction; Loss of functional, structural
domains, disordered regions, post translational
modification sites; gene expression in GTex...

( Conservation )

GERP score; dN/dS; 1000G, ESP6500 allele
frequency; heterozygosity of genes...

( Network )

Shortest path to disease genes; network

centralities...

Pathogenicity prediction

Prediction model

trained on benign, dominant and recessive
disease-causing premature stop mutations

|

Annotated features for pLoFs

3 pathogenicity scores for premature stop and frameshift variants
€.9.-chr pos ref alt effect
1 866453 C T prematureStop SAMD11 0.02 0.06 0.92 Recessive High

Output

gene dominant benign recessive prediction Confidence
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LoF distribution varies as expected
by mutation set (from healthy people v from disease)

1kg ESP6500 ExAC
= 1KG (AF < 1%) Fraction of variants A A
0.12 — 1KG (AF >= 1% 1.00 - AF>1% AF>1% AF>1%
= ESP6500 (AF < 1% | | .
ESP6500 (AF >= % .
c = ExAc (AF < 1%) .
S 01— - ExAc(AF>= 1% :
"5' HGMD ) 0.75 -
[0 o] .
& @ : : 3
£ 008 - | e @ : 3
.‘! [ ] % : :
a / EI 0.50 - . . Y
> P [ c ; ]
£ 0.06 - ‘e 2 : .
- ] % ] o
- M- s0-0=8 2oz 830 @
::::\!Zt\:;°=:30:ﬁ77\ .ilj. 0.25 -
0.04 — s .- o
0.00 -
0.02 — 1kg ESP6500 ExAC HGMD
AF<1% AF<1% AF<1%
T T T T |
0.2 0.4 0.6 0.8 1.0
Relative position in CDS Balasubramanian S.*, Fu Y.* et al., NComms., 17
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cancer genes vs. LoF tolerant genes

ALO FT identifies deleterious —8— 504 cancer genes —e— 387 LoF-tolerant genes
somatic LOF variants —e— 504 random genes —#— 387 random genes

14
|
60
—e

Cancer genes:
¢ COSMIC consensus:
* Enriched in deleterious LoFs.

variants in gene sets

LoF tolerant genes:
* LoF in the 1KG cohort. -
« Depleted in de/etem

0O 01 02 03 04 05 06 07 08 09 1

percentage pf somatic pL
2
|

0
|

Bal ian S.*, FuY.* etal., NC ., 17 ,
alasubramanian S.*, Fu et al.,, NComms., 1-benign ALoFT score
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Computational analysis of variants: coding versus non-coding

Intro: types of variants « RADAR Prioritization for
« Rare vcommon, RBP sites
somatic v germline, coding v noncoding » Prioritizes variants based on

post-transcriptional regulome
using ENCODE eCLIP

Incorporates new features

Identifying cryptic allosteric sites with STRESS

« On surface & in interior bottlenecks related to RNA sec. struc &
Frustration as a localized metric of SNV tissue specific effects
impact « UOREF Prioritization

« Feature integration to find small

+ Differential profiles for oncogenes v. TSGs _
subset of upstream mutations

ALoFT: Annotation of LoF Transcripts that potentially alter translation
Using dynamics to help identify mutation « GRAM to assess the
clusters (Hotcommics) molecular effect of
+ Find dynamic sub-communities & determine aggregated (promotor) mutations
mutational burden within these . Universal score + cell type

specific score



Structures have been used successfully to “aggregate” the

burden of mutations

Sivley, et al., AJHG. (2018)

Observed
_>

These approaches
search for mutational
clusters on protein
structure using distance
cutoff.

Permutation is
performed to identify
statistically significant
mutational clusters on
static protein structure.

Both rare germline &
somatic



Protein dynamics is important for protein function

Proteins are inherently dynamic bio-molecules and
Closed conformation Occluded conformation Sample Iarge ensembles Of ConfOrmationS.

Cofactor

prior structure-based methods are potentially less
sensitive to identify functional residues through the
mutation clustering approach.

Potentially miss many critical mutational clusters

We leverage protein dynamics to identify mutation
clusters

Focus on data from from TCGA pancan atlas data



[Kumar et al. (‘19). PNAS]

Workflow to aggregate mutations taking into account dynamics

X .»m.“.
o | G
motions Somad S

Q-0

identify

A\ VA network
modules
Vs

------------------------------

He e Heo e He He
o
¥
¥
¥
M

empirical p values

Our framework leverages large-scale conformational
changes of a protein to identify dynamic sub-regions of
proteins (or “communities”).

we mapped missense mutations
onto three-dimensional protein structures.

For each community with mapped mutations, we
performed a Fisher exact test to determine whether
variants fall within a given community is more frequently
observed than what would be expected by chance.



Pancancer Q-Q plot for genes with hotspot communities

@PIK3RI

Co @
e, Our pan-cancer analysis identifies hotspot
EIF2B1 @ g .
30~ communities present on protein structures
. of 434 putative driver genes.
g ANPEP'.
g 20 - VAV1@ NRAS
© [ J
& 4
g - Our workflow identifies well known driver
genes as well as novel putative driver
genes.
0
0 ! '|°g10 Pvalueexpected 3

[Kumar et al. (‘19). PNAS]



Example of oncogene with hotspot communities

[Kumar et al. (‘19). PNAS]

BRAF: We identify one hotspot
community comprising of 52 residues
on the co-crystal structure of the
BRafV600E kinase domain .



Example of TSG with hotspot communities

,{}

A We identify two hotspot communities
adjacent to each other on the co-crystal
structure of the PIK3R1 gene.

[Kumar et al. (‘19). PNAS]



Example of novel drivers with hotspot communities

Our workflow predicts one hotspot
community that comprise of 47 residues in
the crystal structure of PTPRD gene.

[Kumar et al. (‘19). PNAS]
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a RBP acting on RNA b RNA acting on RBP

RBP
RNA-binding @

domain
RNA

Processing Stability Localization Functimalization

5

Modification Translation Interaction Stability

Nature Reviews | Molecular Cell Biology
2018 May;19(5):327-341. doi: 10.1038/nrm.2017.130. Epub 2018 Jan 17.
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]

25 Mbp (47%)
Not Overlapped

eCLIP Overlapping
Trans. Reg. Annotation

RNA-binding
domain?

eCLIP

Unique to
RNA
Regulome

o

-

g

Density

ding Proteins (RBPs)

Before ENCODE3: >150 expt.
in many different cell types

ENCODE3 did ~350 focused eCLIP expt.

for >110 RBPs on HepG2 & K562
(Van Nostrand...Yeo. Nat. Meth. '16;

Van Nostrand...Graveley, Yeo

(submitted in relation to ENCODES3))

ENCODE 3 - eCLIP peaks

O RBP eCLIP
Trans. Reg. Annotation (TF)

! | 1

500
Average Peak Length (bp)

50
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https://www.ncbi.nlm.nih.gov/pubmed/29339797

Schematic of RADAR Scoring
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Co-binding of RBPs form biologically relevant complexes

Literature supported RBP complexes
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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Visualization of RADAR Features and Scoring

Germline Variants are Score Using a
Universal Scoring Scheme
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Visualization of RADAR Features and Scoring
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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Computational analysis of variants: coding versus non-coding

Intro: types of variants « RADAR Prioritization for
« Rare vcommon, RBP sites
somatic v germline, coding v noncoding » Prioritizes variants based on

post-transcriptional regulome
using ENCODE eCLIP

Incorporates new features

Identifying cryptic allosteric sites with STRESS

« On surface & in interior bottlenecks related to RNA sec. struc &
Frustration as a localized metric of SNV tissue specific effects
impact « UOREF Prioritization

« Feature integration to find small

+ Differential profiles for oncogenes v. TSGs _
subset of upstream mutations

ALoFT: Annotation of LoF Transcripts that potentially alter translation
Using dynamics to help identify mutation « GRAM to assess the
clusters (Hotcommics) molecular effect of
+ Find dynamic sub-communities & determine aggregated (promotor) mutations
mutational burden within these . Universal score + cell type

specific score



Upstream open reading frames (UORFs) regulate
translation are affected by mutation

cap 5’ UTR main coding sequence 3’ UTR polyA :
| I I I 1 ® UORFs regulate the translation of downstream
e ARAAAA coding regions.
u u .
[Calvoetal., PNAS (09)] e |n Battle et al. 2014 data uORF gain & loss
Protein- i
LORE iR OFF assoc. protein level change.
v
—————}
Initiation at No initiation at uORF.
.\ uORF A 43S “leaks” by. O uORF gain
—EI—I:I— - s> — . i O UORF loss [McGillivray et al., NAR (‘18)]
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ribosome profilng labeled uORFs

From a “Universe” of
1.3 M pot. uORFs

The population of functional
uORFs may be significant

functional uORFs
population size unknown

ribosome profiling labeled uORFs
known population size

high false negative rate

high false positive rate

all uORFs

&

all uORFs

Ribosome profiling experiments have
low overlap in identified uORFs.

This suggests high false-negative rate,
and more functional uORFs than

currently known.

[McGillivray et al., NAR (‘18)]
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Prediction & validation of
functional uORFs using 89 features

e All near-cognate start codons predicted.

e (Cross-validation on independent ribosome
profiling datasets and validation using in vivo
protein levels and ribosome occupancy in
humans (Battle et al. 2014).

— training validation ROC
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[McGillivray et al., NAR (‘18)]
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A comprehensive catalog of functional uORFs

Epositive score
Onegative score

total predicted positive 60, 2-voted positive
unlabeled _ Dpredicted positive 1.8X10° } §
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® 180K.: Large predicted positive set

e Predicted functional uORFs may be intersected likely to affect translation

with disease associated variants. ) ,
e (Calibration on gold standards,

suggests getting ~70% of known

[McGillivray et al., NAR (‘18)]
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Computational analysis of variants: coding versus non-coding

Intro: types of variants « RADAR Prioritization for
« Rare vcommon, RBP sites
somatic v germline, coding v noncoding » Prioritizes variants based on

post-transcriptional regulome
using ENCODE eCLIP

Incorporates new features

Identifying cryptic allosteric sites with STRESS

« On surface & in interior bottlenecks related to RNA sec. struc &
Frustration as a localized metric of SNV tissue specific effects
impact « UOREF Prioritization

« Feature integration to find small

+ Differential profiles for oncogenes v. TSGs _
subset of upstream mutations

ALoFT: Annotation of LoF Transcripts that potentially alter translation
Using dynamics to help identify mutation « GRAM to assess the
clusters (Hotcommics) molecular effect of
+ Find dynamic sub-communities & determine aggregated (promotor) mutations
mutational burden within these . Universal score + cell type

specific score



Promotor Mutations

 How do we assess their effect?

- What's the readout? Expression?
* Molecular v Organismic phenotype
 Importance of specific cellular context
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[Lou et al. (‘19). PLOS Genetics]

GRAM approach for assessing molecular impact

molecular effect

Luciferase assay(MPRA/lenti-virus)
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[Lou et al. (‘19). PLOS Genetics]

Model trained by GM12878 ChIP-Seq + SELEX dataset in step3
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[Lou et al. (‘19). PLOS Genetics]
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Computational analysis of variants: coding versus non-coding

Intro: types of variants « RADAR Prioritization for
« Rare vcommon, RBP sites
somatic v germline, coding v noncoding » Prioritizes variants based on

post-transcriptional regulome
using ENCODE eCLIP

Incorporates new features

Identifying cryptic allosteric sites with STRESS

« On surface & in interior bottlenecks related to RNA sec. struc &
Frustration as a localized metric of SNV tissue specific effects
impact « UOREF Prioritization

« Feature integration to find small

+ Differential profiles for oncogenes v. TSGs _
subset of upstream mutations

ALoFT: Annotation of LoF Transcripts that potentially alter translation
Using dynamics to help identify mutation « GRAM to assess the
clusters (Hotcommics) molecular effect of
+ Find dynamic sub-communities & determine aggregated (promotor) mutations
mutational burden within these . Universal score + cell type

specific score



Computational analysis of variants: coding versus non-coding

Intro: types of variants - RADAR Prioritization for
« Rare vcommon, RBP sites
somatic v germline, coding v noncoding Prioritizes variants based on

post-transcriptional regulome
using ENCODE eCLIP

Incorporates new features

Identifying cryptic allosteric sites with STRESS

« On surface & in interior bottlenecks related to RNA sec. struc &
Frustration as a localized metric of SNV tissue specific effecfs
impact « UOREF Prioritization

Feature integration to find small

- Differential profiles for oncogenes v. TSGs ]
subset of upstream mutations

ALOFT: Annotation of LoF Transcripts that potentially alter translation
Using dynamics to help identify mutation - GRAM to assess the
clusters (Hotcommics) molecular effect of
- Find dynamic sub-communities & determine aggregated (promotor) mutations
mutational burden within these - Universal score + cell type

specific score
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