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Computational analysis of variants: coding versus non-coding

Mark Gerstein, Yale

Slides freely downloadable from Lectures.GersteinLab.org & “tweetable” (via @MarkGerstein). 
No Conflicts for this Talk. See last slide for more info.
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Common

Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation: 
the prevalence of rare variants in population studies

A Typical 
Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Coding Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger

[Sethi et al. COSB (’15)] 



Rare (as opposed to common) 
variant analysis particularly 
applicable at the moment

• CMG rare-disease & 
TCGA somatic variants

• Main NIH disease genomics projects
• Both focus on ”rare” variant for which 

GWAS is not meaningful 
• For purpose of assessing impact & 

aggregating “burden” across a gene, 
somatic & germline rare can be considered 
similar – no notion of LD

• Differences: 
drivers under “cell-level” positive selection 
while 
Mendelian variants are under strong 
negative selection from an organismal 
perspective
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Coding v Non-coding

• Coding
- Easily interpretable, particularly related to structure
- Available in large quantities 
- Exomes have the current potential for great scale (Scale of 
EXAC, >60K exomes [Lek et al. ‘16])

• Non-coding 
- Not as interpretable & hard to connect to genes

• “Near coding”
- Bits of non-coding, close to genes & readily linked to them
- EX: Splice sites, promotors, uORF
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other words, a new, non-lethal, missense, germline mutation in a
GPCRdrug target arises in 1 of every!300newborns (Figure 2D).
These observations collectively suggest that GPCR drug targets
are likely to show substantial variation with new missense muta-
tions continuing to arise within their coding region.

Mutational Landscape of GPCR Drug Targets
In addition to MV, mutations that introduce a stop codon, cause
a frameshift or affect essential splice sites constitute loss-of-
function variations (LoF). The abundance of a protein-coding
gene may be affected by deletions and/or duplications (copy
number variation [CNV]). Such mutational events may alter the
functional property and/or change the abundance of a drug
target, either of which can influence drug efficacy, safety profile,
and adverse reaction. How much variability is seen in the GPCR
drug targets in the human population? To characterize the spec-
trum and prevalence of variation in GPCRdrug targets, we inves-
tigated data from the exome aggregation consortium (ExAC),
which contains aggregated information on MVs, LoFs, and
CNVs for!60,000 ‘healthy’ individuals (Lek et al., 2016; Ruderfer
et al., 2016). This allowed us to characterize the mutational land-
scape of currently druggable GPCRs in the human population.

We find a total of 14,192 MVs in 108 GPCR drug targets,
with a mean of 128 rare (MAF <1 3 10"3) and 3.7 common
(MAF R 1 3 10"3) variants per receptor (Figure 3A and S1A).

On average, 25% of all positions in each of the 108 GPCRs
contain a MV (Figure 3A). GPCR drug targets have, on average,
a LoF mutation in 9.3 different positions per receptor (Figure 3B).
Our conservative estimate suggests that on average, at least 120
of the 60,706 individuals harbor such LoF mutations (i.e., stop
codon, essential splice site, and frameshift mutation) in a
GPCR drug target (0.2%; STAR Methods). In fact, a minimum
of one LoF variant has been observed in each of the 108 GPCRs
suggesting that heterozygosity, regulatory epistasis, and buff-
ering mechanisms such as allele-specific expression might
offset the effects of these drastic mutations in healthy individuals
(Lappalainen et al., 2011; Kukurba et al., 2014).ManyGPCRdrug
targets are also susceptible to CNVs and each of the GPCRs
analyzed had on average two duplications and three deletions
reported in the ExAC dataset (Figure 3C).
The m-opioid receptor (MOR;OPRM1), targeted by analgesics,

is one of the highly variable GPCR drug targets in the human
population (Table S3; Figure S1B). Integrating the information
about the extent of variability of GPCR targets with the FDA-
approved drugs revealed that several of the highly polymorphic
GPCRs are targeted by a large number of drugs (Figures
S2A–S2C). Thus, the extensive genetic variation in GPCR drug
targets may contribute to a substantial, and as yet underappre-
ciated, variability in drug responses between individuals in the
population.
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Figure 1. Pharmacogenomic Landscape of GPCR Drug Targets
Schematic highlighting the different types of data analyzed in this study, ranging from data on drug targets, variants, functional effects, sequences, structures to

information on prescription, and sales of drugs in the UK.

42 Cell 172, 41–54, January 11, 2018

Structure particularly useful for 
interpreting the impact of the many 
rare variants whose effect can not 
be found via GWAS

Also, integration of structure data 
with genomic variants, EHR & drug 
data will be key for realizing the 
goal of precision medicine.

Structure & genomics

Gerstein et al., Nat. Struct. Bio. 2000

Hauser et al., Cell 2018
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Computational analysis of variants: coding versus non-coding

• Intro: types of variants
• Rare v common, 

somatic v germline, coding v noncoding

• Identifying cryptic allosteric sites with STRESS 
• On surface & in interior bottlenecks 

• Frustration as a localized metric of SNV 
impact
• Differential profiles for oncogenes v. TSGs

• ALoFT: Annotation of LoF Transcripts
• Using dynamics to help identify mutation 

clusters (Hotcommics)
• Find dynamic sub-communities & determine aggregated 

mutational burden within these

• RADAR Prioritization for 
RBP sites
• Prioritizes variants based on 

post-transcriptional regulome 
using ENCODE eCLIP

• Incorporates new features 
related to RNA sec. struc & 
tissue specific effects

• uORF Prioritization 
• Feature integration to find small 

subset of upstream mutations 
that potentially alter translation

• GRAM to assess the 
molecular effect of 
(promotor) mutations
• Universal score + cell type 

specific score



Computational analysis of variants: coding versus non-coding

• Intro: types of variants
• Rare v common, 

somatic v germline, coding v noncoding

• Identifying cryptic allosteric sites with STRESS
• On surface & in interior bottlenecks 

• Frustration as a localized metric of SNV 
impact
• Differential profiles for oncogenes v. TSGs

• ALoFT: Annotation of LoF Transcripts
• Using dynamics to help identify mutation 

clusters (Hotcommics)
• Find dynamic sub-communities & determine aggregated 

mutational burden within these

• RADAR Prioritization for 
RBP sites
• Prioritizes variants based on 

post-transcriptional regulome 
using ENCODE eCLIP

• Incorporates new features 
related to RNA sec. struc & 
tissue specific effects

• uORF Prioritization 
• Feature integration to find small 

subset of upstream mutations 
that potentially alter translation

• GRAM to assess the 
molecular effect of 
(promotor) mutations
• Universal score + cell type 

specific score



9
-L

ec
tu

re
s.

G
er

st
ei

nL
ab

.o
rg

Models of Protein Conformational Change
Motion Vectors from Normal Modes (ANMs)

inexpensive. For these reasons, they rapidly have replaced molecular
mechanics force fields that had been used for NMA of proteins earlier
[6–10].

The robustness of NMAwith ENMs for the description of slow collec-
tive motions in proteins can seem surprising, given its simple construc-
tion. The motivation outlined above for using ENMs involved some
brave assumptions, and it was not necessarily clear beforehand that
these assumptions were valid. In particular, the harmonic approxima-
tion used for investigating dynamics of large conformational changes
and the absence of frictions such as those caused by the solvent. Yet,
early studies comparing NMA and experimental structural data, or
molecular dynamics simulations, did validate the use of NMA with
coarse-grained models. Validation against detailed molecular mechan-
ics force fields on large protein datasets has shown that even coarser
models than the one suggested by Tirion still reproduce the slow
dynamics obtained from molecular simulations (e.g. [11–14]). Further-
more, several studies have shown that in many cases, a few low-energy
normal modes account for most of the structure difference between two
conformational states [15–18]. Conformational changes can be described
by just a few low-energy normal modes intimately linked to the struc-
ture, indicating that proteins systematically make use of these low-
energy modes to achieve their function. The importance of these
modes for protein function has naturally led to the question of the
evolutionary conservation of their slow dynamics, analogous to the
conservation between structure and sequence. Fig. 1 illustrates the
relationship between the similarities in structural shape and intrinsic
domain motion described by the low energy normal modes from the
ENMs of two distantly related P-type ATPases.

Examples of comparative dynamics analysis include studying a set of
proteins that represent various functional states of a given enzymeupon
ligand-binding [19,20], evaluating the conservation of dynamics within
a homologous protein family [21–27], or within a set of proteins that
possess the same fold despite low sequence identity [28,29]. In a recent
article, CristianMicheletti comprehensively reviewed the use of dynam-
ics as an aid for sequence and structure alignments of proteins [30]. It
has been shown, when comparing structures of homologous proteins

and their intrinsic dynamics, that protein structures evolve along low-
energy modes [14,31,32]. Furthermore, a number of studies have
shown that low-energy modes are robust to sequence variations [14,
29,33–37]. The use of ENMs for comparative protein dynamics has the
potential to teach us more about a wide range of topics. To name a
few, these can include the effects of ligand or allosteric effector binding
in an active or allosteric site, changes in oligomeric state, changes in
sequence or structure through evolution, and the level of similarity in
dynamics between functionally similar enzymes.

Together with the question of the evolutionary conservation of
internal dynamics has come the need to reliably compare computed
dynamics for a set of protein structures. Due to the scarcity of experi-
mental data describing protein dynamics, molecular modelling at
large is an attractive alternative that has earlier demonstrated its predic-
tive power through numerous applications. ENMs are a model of choice
for such studies, even if computing power has admittedly becomemore
affordable than it was at the advent of ENMs and molecular dynamics
simulations on microsecond time-scales are becoming increasingly
accessible to the research community. The tractability and simplicity
of ENMs are unparalleled by molecular mechanics force fields and
ENMs defined with transferrable parameters can be easily applied to
large numbers of protein structures in automated ways. Beyond the
choice of the ENM and its parameterisation, comparing internal dynam-
ics of several protein structures comes with a set of methodological
choices, which are not obvious, but can significantly affect the outcome
of the comparative dynamics analysis. After an introduction to the
formalism of ENMs and their parameterisation, we focus on aspects
that are directly relevant for comparative analysis of multiple protein
structures, such as the similarity measures used to compare computed
dynamics, the influence of the alignment methods and ways to include
the influence of regions in the structures that are not similar in sequence
or conserved into the comparison. Next, using selected examples, we
describe how comparing protein intrinsic dynamics can be successfully
used to understand conformational changes upon ligand binding, func-
tional oligomerisation states and the overall role of intrinsic dynamics
in protein function. Finally we list some of the most commonly used
software and libraries for ENM calculations.

2. Elastic network models

2.1. Formalism

Since Tirion's contribution [3], further simplifications of the ENMs
have been made. Tirion's model was an elastic network with a node
for each atom and springs with uniform force-constants between all
pairs of nodes closer than a distance-based cut-off. Upon realising that
a good density estimate can be made even without atomic detail and
that backbone motion can be largely decoupled from side-chain move-
ment, Hinsen et al. [4] introduced a model with non-uniform distance
dependent force-constants, connecting only Cα atoms. Atilgan et al.
[5] also applied Tirion's uniform force constant model at the Cα granu-
larity. Thismodel is particularly convenient to visualise, and is illustrated
in Fig. 2. Another popular density-based model has been the early
Gaussian network model (GNM) [38]. While it obtains density esti-
mates in a way that is similar to Atilgan et al., this model does not em-
ploy a Hookean potential. The interpretation of GNMs is therefore
different from the ENMs.

Since the initial ENMs, many variants have been proposed. More
detailed descriptions of the local backbone configurations have been
investigated, such as parameters dependent on the secondary structure
of the backbone [39,40], the reintroduction of chemical bond informa-
tion or other kinds of residue specific interaction terms [41–43] as
well as the modelling of side-chain locations [44]. On the other hand,
simplifications to fewer coordinates have been proposed, both in terms
of simpler coordinate systems [45,46] and less granular representations

Fig. 1.Normalmode vectors fromelastic networkmodels of two distantly relatedproteins.
The SR Calcium ATPase 1 (PDB ID: 1WPG [126], green) and the Copper-transporting PIB-
type ATPase (PDB ID: 3RFU [127], cyan) have similar low frequency modes as illustrated
here by the third lowest energy modes of each protein (red arrows). These vectors show
the flexibility of the four domains of the proteins with respect to each other. This is an
example where two structures with similar shapes yield comparable normal mode
vectors from ENMs. The normal mode vector fields for these structures were computed
using WEBnma [110] and the images were rendered in VMD [128].

912 E. Fuglebakk et al. / Biochimica et Biophysica Acta 1850 (2015) 911–922

PDB ID: 3RFU
Adapted from Fuglebakk et al, 2014

Characterizing uncharacterized variants
<= Finding Allosteric sites
<= Modeling motion
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Surface region with high 
density of candidate sites

Surface region with low 
density of candidate 
sites

Predicting Allosterically-Important Residues at the Surface 

pdb 1J3H

1. MC simulations generate a large number of candidate sites
2. Score each candidate site by the degree to which it perturbs large-scale motions
3. Prioritize & threshold the list to identify the set of high confidence-sites

! !

deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 

�� ij
 i     j

¨dbinding leverage  =  2

��������������ij(m)
 i     j

¨dbinding leverage  =  2
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Predicting Allosterically-Important Residues at the Surface 

Adapted from Clarke*, Sethi*, et al (‘16)

PDB: 3PFK



1
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Predicting Allosterically-Important Residues within the Interior 

Adapted from Clarke*, Sethi*, et al (‘16)
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where 

Covij  =  ⟨ri ! rj⟩$

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in the term ⟨ri ! rj⟩ indicate that the mean value for the dot product 

ri ! rj (over the 10 lowest-frequency non-trivial modes) is taken. 

An example may help to clarify this. If two interacting residues exhibit a high degree of 

correlated motion, then the motion of one may tell us about the motion of the other, suggesting a 

strong flow of energy or information between the two residues, resulting in a low value for Dij: a 

strong correlation (or a strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that 

is close to 1. This gives a low value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated 

motion, this effective distance Dij between residues i and j is very short. This small Dij means that 

any path involving this pair of residues is likewise shorter as a result, thereby more likely placing 

this pair of residues within a shortest path, and more likely rendering this pair a bottleneck pair. 

In sum, this edge-weighting scheme is such that a high correlation in motion results in a short 

effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a 

large effective distance Dij results, thereby making it more difficult for the pair of residues to lie 

within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and 

the communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) 

with these effective distances, a residue is deemed to be critical for allosteric signal transmission 

(i.e., an interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest paths 

involving that edge, where a path length is the sum of its associated effective edge distances (see 

above). The shortest distance between each NC2 pair of nodes in the network of N residues is 

calculated using the Floyd–Warshall algorithm (Cormen et al, 2009). 

! 24!

 
 

Figure 2.6: Community partitioning for canonical systems. Different network communities are colored 
differently. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the highest-
betweenness edges between the corresponding communities.  
 

2.3-a-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between 

residues i and j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of 

any heavy atom within residue j, and the trivial cases of pairs of residues that are adjacent in 

sequence are excluded (i.e., residues that are adjacent in sequence are not considered to be in 

contact within the network). 

Network edges are then weighted on the basis of correlated motions of the interacting 

residues, with these motions provided by the same ANMs that are used in identifying surface-

critical residues. However, as with surface-critical residues, it is also possible to model the 

motions for identifying interior-critical residues using pairs of crystallographic structures in 

distinct conformations (Section 3.4). The edge weighting scheme is performed as follows: an 

“effective distance” Dij for an edge between interacting residues i and j is set to Dij = −log(∣Cij∣), 

where Cij designates the correlated motions between residue i and j: 
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Predicting Allosterically-Important Residues within the Interior 
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Adapted from Clarke*, Sethi*, et al (‘16)

PDB: 1XTT

Predicting Allosterically-Important Residues within the Interior 
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slope: 2.344

slope: 1.307

Auto-scalable
back-end

EC2Thin front end
EC2

RESTful
storage

EC2

EC2

S3

S3
Queue

Adapted from Clarke*, Sethi*, et al (‘16)

STRESS Server Architecture: Highlights
stress.molmovdb.org

• A light front-end server handles incoming requests, and powerful back-end 
servers perform calculations. 

• Auto Scaling adjusts the number of back-end servers as needed. 

• A typical structure takes ~30 minutes on a E5-2660 v3 (2.60GHz) core.

• Input & output (i.e., predicted allosteric residues) are stored in S3 buckets.
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1000 Genomes

p=0.309 p=1.80e-05

Intra-species conservation of predicted allosteric residues
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ExAC

p=1.49e-3 p=7.98e-09

Intra-species conservation of predicted allosteric residues
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18
[Sethi et al. COSB (’15)] 
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Adapted from Clarke*, Sethi*, et al (in press)
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[Sethi et al. COSB (’15)] 



Computational analysis of variants: coding versus non-coding

• Intro: types of variants
• Rare v common, 

somatic v germline, coding v noncoding

• Identifying cryptic allosteric sites with STRESS
• On surface & in interior bottlenecks 

• Frustration as a localized metric of SNV 
impact
• Differential profiles for oncogenes v. TSGs

• ALoFT: Annotation of LoF Transcripts
• Using dynamics to help identify mutation 

clusters (Hotcommics)
• Find dynamic sub-communities & determine aggregated 

mutational burden within these

• RADAR Prioritization for 
RBP sites
• Prioritizes variants based on 

post-transcriptional regulome 
using ENCODE eCLIP

• Incorporates new features 
related to RNA sec. struc & 
tissue specific effects

• uORF Prioritization 
• Feature integration to find small 

subset of upstream mutations 
that potentially alter translation

• GRAM to assess the 
molecular effect of 
(promotor) mutations
• Universal score + cell type 

specific score
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What is 
localized 

frustration
?

[Ferreiro et al., PNAS (’07)]



2
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Workflow for evaluating localized frustration changes (∆F)
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Complexity of the second order 
frustration calculation

T
i
m
e

Accuracy

Second order frustration calculation (∆F)

MD-assisted free energy calculation (∆G)

First order frustration calculation (F)
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Comparing ∆F values across different 
SNV categories: disease v normal

Loss of 
frustration

Gain of 
frustration

[Kumar et al, NAR (2016)]

Core residues Surface residues

Normal mutations (1000G) tend to unfavorably 
frustrate (less frustrated) surface more than core, 
but for disease mutations (HGMD) 
no trend & greater changes
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Comparison between ∆F 
distributions: TSGs v. oncogenes

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the 
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

[K
um

ar
 e

t a
l, 

N
AR

(2
01

6)
]



Computational analysis of variants: coding versus non-coding

• Intro: types of variants
• Rare v common, 

somatic v germline, coding v noncoding

• Identifying cryptic allosteric sites with STRESS
• On surface & in interior bottlenecks 

• Frustration as a localized metric of SNV 
impact
• Differential profiles for oncogenes v. TSGs

• ALoFT: Annotation of LoF Transcripts
• Using dynamics to help identify mutation 

clusters (Hotcommics)
• Find dynamic sub-communities & determine aggregated 

mutational burden within these

• RADAR Prioritization for 
RBP sites
• Prioritizes variants based on 

post-transcriptional regulome 
using ENCODE eCLIP

• Incorporates new features 
related to RNA sec. struc & 
tissue specific effects

• uORF Prioritization 
• Feature integration to find small 

subset of upstream mutations 
that potentially alter translation

• GRAM to assess the 
molecular effect of 
(promotor) mutations
• Universal score + cell type 

specific score
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vat.gersteinlab.org

VCF Input 
Output:
• Annotated VCFs
• Graphical representations of 

functional impact on 
transcripts

Access:
• Webserver
• AWS cloud instance
• Source freely available

Habegger L.*, Balasubramanian S.*, et al. Bioinformatics, 2012

Variant Annotation Tool (VAT), developed for 1000G FIG

CLOUD APPLICATION
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Complexities in LOF annotation

Transcript isoforms,
distance to stop,
functional domains,
protein folding,
etc.

Balasubramanian S. et al., Genes Dev., ’11
Balasubramanian S.*, Fu Y.*  et al., NComms., ’17
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Annotation of
Loss-of-Function
Transcripts (ALoFT)

Runs on top of VAT

Output:

● Impact score: benign or deleterious.
● Decorated VCF.

Balasubramanian S.*, Fu Y.*  et al., NComms., ’17
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LoF distribution varies as expected 
by mutation set (from healthy people v from disease)

Balasubramanian S.*, Fu Y.*  et al., NComms., ’17
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ALoFT identifies deleterious
somatic LoF variants
Cancer genes:
• COSMIC consensus.
• Enriched in deleterious LoFs.

LoF tolerant genes:
• LoF in the 1KG cohort.
• Depleted in deleterious LoFs.

Balasubramanian S.*, Fu Y.*  et al., NComms., ’17



Computational analysis of variants: coding versus non-coding

• Intro: types of variants
• Rare v common, 

somatic v germline, coding v noncoding

• Identifying cryptic allosteric sites with STRESS
• On surface & in interior bottlenecks 

• Frustration as a localized metric of SNV 
impact
• Differential profiles for oncogenes v. TSGs

• ALoFT: Annotation of LoF Transcripts
• Using dynamics to help identify mutation 

clusters (Hotcommics)
• Find dynamic sub-communities & determine aggregated 

mutational burden within these

• RADAR Prioritization for 
RBP sites
• Prioritizes variants based on 

post-transcriptional regulome 
using ENCODE eCLIP

• Incorporates new features 
related to RNA sec. struc & 
tissue specific effects

• uORF Prioritization 
• Feature integration to find small 

subset of upstream mutations 
that potentially alter translation

• GRAM to assess the 
molecular effect of 
(promotor) mutations
• Universal score + cell type 

specific score



These approaches 
search for mutational 
clusters on protein 
structure using distance 
cutoff.

Permutation is 
performed to identify 
statistically significant 
mutational clusters on 
static protein structure.

Both rare germline & 
somaticSivley , et al., AJHG. (2018)

Structures have been used successfully to “aggregate” the 
burden of mutations

Figure 1. Schematic of Our Framework for Evaluating the Spatial Distribution of Genetic Variants
(A) Spatial distributions candiverge from random in twoways; theymayhave fewer neighbors than expected by chance (dispersed) ormore
neighbors than expected by chance (clustered). Example distributions are illustrated in reference to a random spatial distribution in 2D.
Below each set of points, the resulting K statistic at multiple distance thresholds (red) is plotted in reference to the expected K distribution
under a randomdistribution (gray).Kvaluesbelowtherangeexpectedat randomindicatedispersion, andKvalues above indicate clustering.
(B) Definition of the K statistic. For a range of distance thresholds (t), the number of variants neighboring each variant is computed and
normalized by the total number of variant pairs. The indicator function I evaluates to 1 when two variants are neighbors (the distance
between them [Dij] is less than t) and 0 otherwise.
(C) The observed K values are evaluated in reference to an empirical null distribution generated from 100,000 random permutations of
variant locations within the protein structure.
(D) The spatial distribution trend for each protein is summarized by calculating the area between the observed K values (red points) and
the median permuted K values (black points).
(E) This process is repeated for the K values resulting from each permuted set to generate an empirical null distribution. From this dis-
tribution, we calculate a Z-score and p value for the observed area. Positive Z-scores indicate clustering, negative Z-scores indicate disper-
sion, and Z-scores near zero indicate a lack of spatial constraint.

The American Journal of Human Genetics 102, 415–426, March 1, 2018 417



Protein dynamics is important for protein function

stopped-flow fluorescence folding studies of these molecules can be 
well interpreted in the context of a two-state cooperative process80,81, 
the NMR data clearly establish on-pathway intermediates populated to 
approximately 1–2% at room temperature. A structural ensemble cor-
responding to the folding intermediate for a G48V mutant of the Fyn 
SH3 domain is shown in Figure 6a, based exclusively on 15N chemical 
shifts in the intermediate state that were obtained from the analysis of 
the dispersion data (Box 1). The ensemble of structures, though pre-
liminary, establishes that a central B-sheet that is present in the folded 
conformer is already formed in the intermediate state45. More recently, 
a study of a second mutant Fyn SH3 domain has shown that non-native 
interactions are formed in the intermediate state81; notably, mutations at 
the N terminus affect 15N chemical shifts of some residues in the inter-
mediate state but not in the folded conformer, which implies that there 
are at least a subset of interactions that differ in the two states. Further 
structural details must await more sophisticated analyses involving the 
range of chemical shift probes and bond vector orientations that are 
indicated in Figure 4a.

CPMG RD data are limited in scope to the study of low-lying excited 
states that are populated to at least 0.5% relative to the ground state. A 
complementary method that does not have this limitation is native-state 
HD exchange. HD exchange rates as a function of low concentrations of 
denaturant, measured on a per-residue basis by sensitive NMR meth-
ods, can be used to characterize folding intermediates with miniscule 
populations62. In a seminal series of experiments, a range of excited 
states of cytochrome c have been identified that correspond to the partial 
unfolding of distinct regions of secondary structure82, termed ‘foldons’. 
By considering the energetics of the various states, a folding pathway was 
inferred that describes the progressive formation of foldons that stabilize 
the formation of additional structural elements (Fig. 6b)—a finding 
later supported by studies on a range of proteins62. It is worth noting that 
the emerging views on protein folding from HD exchange are generally 
consistent with the picture obtained from relaxation dispersion show-
ing intermediates comprised of folding units (see above), at least for the 
SH3 and FF (ref. 52) domains that have been studied in detail. Overall, 
results from both techniques and from a wealth of data produced by the 
protein engineering method and stopped-flow techniques2,83,84 indicate 
that many proteins fold via a network of often high-energy intermediates 
whose existence is predetermined by the amino acid sequence and the 
prevalent solution conditions.

Concluding remarks
A large body of evidence using a diverse spectrum of biophysical meth-
ods clearly establishes that proteins are dynamic over a broad range of 
timescales and that such dynamics play critical roles in function. Over 
the past decade, new and powerful NMR approaches have emerged that 
have significantly contributed to our understanding of the relation-
ship between dynamics and function. Experiments focusing on invis-
ible excited states have been developed that provide for the first time a 
detailed atomic description of these sparsely populated yet functionally 
significant conformers that normally are recalcitrant to study by well-
established structural tools. Methods have also emerged for studies of 
dynamics in high-molecular-weight complexes, which have traditionally 
been considered to be outside the scope of NMR techniques85,86. This 
review has highlighted some of the new methodologies and provided a 
number of examples from studies of ligand binding, molecular recog-
nition, enzymology and protein folding illustrating how excited states 
are used to help navigate complex energy landscapes so as to ‘guide’ 
the biochemical processes in question. The utility of this methodol-
ogy and the promise of future advances suggest that a paradigm shift 
in structural biology is in the making. It will not be too long before a  

by a two-state cooperative process2. However, it is clear that as the num-
ber of probes increases and the instrumentation used to detect folding 
becomes sensitive to faster timescale processes, the folding mechanism 
deduced is often more complex, involving intermediates that despite 
having ‘native-like’ characteristics, may also contain significant non-
native interactions79.

CPMG RD NMR spectroscopy has been applied to study the fold-
ing pathways of a number of SH3 domains45,48,51. Despite the fact that 

E−NADPH−DHF E−NADP+−THF

E−THF + NADP+E−NADPH–THF

Hydride transfer

E−NADPH + THF

E−NADPH + DHF

E + Mg ATP
AMP E−Mg ATP

AMP E−Mg ATP
AMP

E−Mg ADP
ADPE−Mg ADP

ADPE + Mg ADP
ADP

Occluded conformationClosed conformation

a

Limiting step

b

Reaction

Closed conformationOpen conformation

Limiting step

Cofactor

DHF THF

Cofactor

ATP

AMP

Figure 5  Relaxation dispersion studies of catalysis. (a,b) Reaction schemes 
for E = DHFR (a) and E = Adk (b) with the rate-limiting conformational 
changes associated with each enzymatic process indicated (red arrowheads). 
In the catalytic cycles of both enzymes, chemical rearrangements were 
found to be significantly faster than the conformational change associated 
with the rate-limiting step. Shown are structures of the closed (left) and 
occluded (right) conformations of DHFR (a) and the open (left) and closed 
(right) conformers of Adk (b), with black arrows indicating the direction of 
movement required for catalysis. Adapted from refs. 74 and 38.
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Proteins are inherently dynamic bio-molecules and 
sample large ensembles of conformations.

prior structure-based methods are potentially less 
sensitive to identify functional residues through the 
mutation clustering approach. 

Potentially miss many critical mutational clusters

We leverage protein dynamics to identify mutation 
clusters 

Focus on data from from TCGA pancan atlas data



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Workflow of HotCommics to identify putative driver genes: This integrative approach 
utilizes protein community information along with mapped mutations onto protein structure to 
identify significantly mutated communities in protein structure. Fisher method is employed to 
quantify significance value for each community with mapped mutations. 

Workflow to aggregate mutations taking into account dynamics

Our framework leverages large-scale conformational 
changes of a protein to identify dynamic sub-regions of 
proteins (or “communities”). 

we mapped missense mutations 
onto three-dimensional protein structures.

For each community with mapped mutations, we 
performed a Fisher exact test to determine whether 
variants fall within a given community is more frequently 
observed than what would be expected by chance. 
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Fig2. Pan-cancer analysis of putative driver genes with hotspot communities: a) pan-cancer 

q-q plot for genes with hotspot communities, b) PhyloP conservation score comparison between 

mutations occupying hotspot communities against non-hotspot communities on protein 

structures, c) CADD score correlation between mutations occupying hotspot communities 

against non-hotspot communities on protein structures, d) Biological process enrichment analysis 

for putative driver genes with at least one hotspot. X-axis corresponds to gene ratio that 

corresponds to the fraction of putative driver genes belonging to a particular biological process. 

The color code and size correspond to corrected p-value and number of genes involved in the 

biological process, respectively, e) Reactome based pathway enrichment analysis. The color code 

and size correspond to corrected p-value and number of genes involved in the biological process, 

respectively. 
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Pancancer Q-Q plot for genes with hotspot communities

Our pan-cancer analysis identifies hotspot 
communities present on protein structures 
of 434 putative driver genes.

Our workflow identifies well known driver 
genes as well as novel putative driver 
genes.

[Kumar et al. (‘19). PNAS]



Example of oncogene with hotspot communities

BRAF: We identify one hotspot 
community comprising of 52 residues 
on the co-crystal structure of the 
BRafV600E kinase domain .

[Kumar et al. (‘19). PNAS]



Example of TSG with hotspot communities

We identify two hotspot communities 
adjacent to each other on the co-crystal 
structure of the PIK3R1 gene.

[Kumar et al. (‘19). PNAS]



Example of novel drivers with hotspot communities

Our workflow predicts one hotspot 
community that comprise of 47 residues in 
the crystal structure of PTPRD gene.

[Kumar et al. (‘19). PNAS]



Computational analysis of variants: coding versus non-coding

• Intro: types of variants
• Rare v common, 

somatic v germline, coding v noncoding

• Identifying cryptic allosteric sites with STRESS
• On surface & in interior bottlenecks 

• Frustration as a localized metric of SNV 
impact
• Differential profiles for oncogenes v. TSGs

• ALoFT: Annotation of LoF Transcripts
• Using dynamics to help identify mutation 

clusters (Hotcommics)
• Find dynamic sub-communities & determine aggregated 

mutational burden within these

• RADAR Prioritization for 
RBP sites
• Prioritizes variants based on 

post-transcriptional regulome 
using ENCODE eCLIP

• Incorporates new features 
related to RNA sec. struc & 
tissue specific effects

• uORF Prioritization 
• Feature integration to find small 

subset of upstream mutations 
that potentially alter translation

• GRAM to assess the 
molecular effect of 
(promotor) mutations
• Universal score + cell type 

specific score
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RNA Binding Proteins (RBPs)

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]

Nat Rev Mol Cell Biol. 2018 May;19(5):327-341. doi: 10.1038/nrm.2017.130. Epub 2018 Jan 17.

• Before ENCODE3: >150 expt. 
in many different cell types 

• ENCODE3 did ~350 focused eCLIP expt. 
for >110 RBPs on HepG2 & K562
(Van Nostrand...Yeo. Nat. Meth. '16; 
Van Nostrand...Graveley, Yeo 
(submitted in relation to ENCODE3))

https://www.ncbi.nlm.nih.gov/pubmed/29339797
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]

Schematic of RADAR Scoring
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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High Phastcon in RBP-overlapped annotations RNA Structure Cons. from Evofold

Enriched rare DAF in eCLIP peaks

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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Co-binding of RBPs form biologically relevant complexes

Binding hubs are enriched for rare variants

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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expression levels

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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Visualization of RADAR Features and Scoring

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]

Germline Variants are Score Using a 
Universal Scoring Scheme

Input Variants
eCLIP
GERP
Motif

…
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Visualization of RADAR Features and Scoring

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]

Somatic Variant Scored with Universal + Tissue 
specific context score

Tissue Specific:
Variants

Expression
Regulatory Potential

Input Variants
eCLIP
GERP
Motif

…



Computational analysis of variants: coding versus non-coding

• Intro: types of variants
• Rare v common, 

somatic v germline, coding v noncoding

• Identifying cryptic allosteric sites with STRESS
• On surface & in interior bottlenecks 

• Frustration as a localized metric of SNV 
impact
• Differential profiles for oncogenes v. TSGs

• ALoFT: Annotation of LoF Transcripts
• Using dynamics to help identify mutation 

clusters (Hotcommics)
• Find dynamic sub-communities & determine aggregated 

mutational burden within these

• RADAR Prioritization for 
RBP sites
• Prioritizes variants based on 
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Upstream open reading frames (uORFs) regulate 
translation are affected by mutation

● uORFs regulate the translation of downstream 
coding regions.

● In Battle et al. 2014 data uORF gain & loss 
assoc. protein level change.

[Ferreira et al., Bioengineered (‘14)]

[McGillivray et al., NAR (‘18)]

[Calvo et al., PNAS (‘09)]
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The population of functional 
uORFs may be significant

● Ribosome profiling experiments have 
low overlap in identified uORFs. 

● This suggests high false-negative rate, 
and more functional uORFs than 
currently known.

[McGillivray et al., NAR (‘18)]

From a “Universe” of 
1.3 M pot. uORFs



5
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Prediction & validation of 
functional uORFs using 89 features

● All near-cognate start codons predicted.
● Cross-validation on independent ribosome 

profiling datasets and validation using in vivo 
protein levels and ribosome occupancy in 
humans (Battle et al. 2014).

[McGillivray et al., NAR (‘18)]

Expr.
Level

Tissue
Dist.

Int. 
ATG
Start

Conser-
vation
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A comprehensive catalog of functional uORFs

● 180K: Large predicted positive set 
likely to affect translation  

● Calibration on gold standards, 
suggests getting ~70% of known

[McGillivray et al., NAR (‘18)]

Universe of 1.3M
uORFs scored via 

Simple Bayes algo.

● Predicted functional uORFs may be intersected 
with disease associated variants.
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Promotor Mutations

• How do we assess their effect? 
- What’s the readout? Expression?

• Molecular v Organismic phenotype 
• Importance of specific cellular context
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GRAM approach for assessing molecular impact
[L

ou
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t a
l. 

(‘1
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GRAM performance
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GRAM Important 
Features
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GRAM application to find molecular cause within 
group of eQTL variants

[L
ou

 e
t a

l. 
(‘1

9)
. P

LO
S 

G
en

et
ic

s]
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github.com/gersteinlab/Frustration
S Kumar, D Clarke

STRESS.molmovdb.org

D Clarke, A Sethi, S Li, S Kumar, 
R Chang, J Chen

github.com/gersteinlab/gram
S Lou, KA Cotter, T Li, J Liang, H Mohsen, J Liu, 
J Zhang, S Cohen, J Xu, H Yu, MA Rubin

github.com/gersteinlab/hotcommics
S Kumar, D Clarke

ALoFT.gersteinlab.org

S Balasubramanian, Y Fu, 
M Pawashe, P McGillivray, M Jin, J Liu, 
K Karczewski, D MacArthur

RADAR.gersteinlab.org
J Zhang, J Liu, D Lee, J-J Feng, 
L Lochovsky, S Lou, M Rutenberg-Schoenberg

github.gersteinlab.org/uORFs
P McGillivray, R Ault, M Pawashe,
R Kitchen, S Balasubramanian
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• This Presentation is copyright Mark Gerstein, Yale University, 2019. 
• Please read permissions statement at 

sites.gersteinlab.org/Permissions
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Papers.GersteinLab.org. 

PHOTOS & IMAGES 
For thoughts on the source and permissions of many of the photos and clipped images in this presentation see 
streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can 
be easily queried from flickr, viz: flickr.com/photos/mbgmbg/tags/kwpotppt


