PsychENCODE:

Using
population-scale
functional genomics
to understand neuro-
psychiatric disease

“tweetable’ (via @markgerstein). See last slide for moréinfo.
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A core issue addressed by PsychENCODE:
Using functional genomics to reveal molecular mechanisms
between genotype and phenotype in brain disorders

Disease Herltablllty* Molecular Mechanisms U, K h
....................... Phenotype
Schizophrenia 81% (C4A)
Bipolar disorder 70% | = e
Alzheimer's disease | 58 - 79% Apolipoprotein E (APOE), Tau W
pathways,
30% Renin—angiotensin—aldosterone J circuits
34-53% Atherosclerosis, VCAM-1 Cell types Module
Stroke 32% Reactive oxygen species (ROS), Regulatory
Ischemia elements Genes
Type-2 diabetes 26% Insulin resistance
25'560/0 BRCA, PTEN Genotype

Many psychiatric conditions are highly heritable

Schizophrenia: up to 80%

But we don’t understand basic molecular mechanisms underpinning this association
(in contrast to many other diseases such as cancer & heart disease)

Thus, interested in developing predictive models of psychiatric traits which:
Use observations at intermediate (molecular levels) levels to inform latent structure
Use the predictive features of these “molecular endo phenotypes” to begin to suggest
actors involved in mechanism

*https://www.snpedia.com/index.php/Heritability
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PsychENCODE: Using population-scale functional genomics to
understand neuropsychiatric disease

Construction of an adult brain resource with 1866 individuals,
via data set fusion and uniform processing

Using the changing proportions of cell types
(via single-cell deconvolution) to account for expression variation
across a population & disorders

Large-scale processing defines ~79K PFC
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLS)

Connecting QTLs, enhancer activity relationships & Hi-C into a
brain regulatory network &
using this to link SCZ GWAS SNPs to genes

Embedding the regulatory network in a
deep-learning model to predict disease from genotype & transcriptome.
Using this to suggest specific pathways & genes, as targets.

Other uses for the resource: Highlighting aging related genes +
consistently comparing the brain to other organs
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24 selected cell types
(Neuronal, NonNeuronal, Developmental)
1866 individuals

1866 individuals
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Different neuronal & glial cell
fractions across disorders
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Excitatory to Inhibitory imbalance at
neuronal subtype level for ASD*

* Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain
Behav. 2003

[Wang et al. (‘18) Science]
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PsychENCODE: Using population-scale functional genomics to
understand neuropsychiatric disease

Construction of an adult brain resource with 1866 individuals,
via data set fusion and uniform processing

Using the changing proportions of cell types
(via single-cell deconvolution) to account for expression variation
across a population & disorders

Large-scale processing defines ~79K PFC
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLS)

Connecting QTLs, enhancer activity relationships & Hi-C into a
brain requlatory network &
using this to link SCZ GWAS SNPs to genes

Embedding the regulatory network in a
deep-learning model to predict disease from genotype & transcriptome.
Using this to suggest specific pathways & genes, as targets.

Other uses for the resource: Highlighting aging related genes +
consistently comparing the brain to other organs




Reference Brain

Developing a Reference Set of ~79K PFC Enhancers
& Studying Their Population Variation
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We identified 79056 enhancers

in the reference Brain

[Wang et al. (‘18) Science]
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Reference Brain

Cohort H3K27ac peaks

Developing a Reference Set of ~79K PFC Enhancers
& Studying Their Population Variation

Chr1 15,265 kb 15,270 kb 15,275 kb 15,280 kb
1 1 1 1 1 1 1
Enhancers - -
ATAC-seq ot stemen s M Bos o o0 nilihiban e cnn .
Reference Brain
H3K4me3 79056 enhancers
H3K27ac MM il - -
Peaks track [r——
1 e
R
————
L

Average
overlap
54k + 12k

20

—-I
30 | e
-

Individual

. from cohort

50

[Wang et al. (‘18) Science]

14 = Lectures.GersteinLab.org



Sun, Wei, and Yijuan Hu. "eQTL mapping using RNA-seq data." Statistics in biosciences 5.1

(2013): 198-218.

Quantitaive Trait Loci (QTLs) associated with variation
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Cell fraction QTLs (fQTLs)
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Number of eGenes

Larger brain eQTL sets than previous studies,
but strong overlap with them
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[Wang et al. (‘18) Science]
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Brain eQTLs and enhancers enriched with GWAS
SNPs for brain disorders

Enrichment

eQTL
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Bipolar
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™ Non-brain
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—log10 FDR —log10 FDR

Wang, et al., Science, 2018
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PsychENCODE: Using population-scale functional genomics to
understand neuropsychiatric disease

Construction of an adult brain resource with 1866 individuals,
via data set fusion and uniform processing

Using the changing proportions of cell types
(via single-cell deconvolution) to account for expression variation
across a population & disorders

Large-scale processing defines ~79K PFC
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLS)

Connecting QTLs, enhancer activity relationships & Hi-C into a
brain requlatory network &
using this to link SCZ GWAS SNPs to genes

Embedding the regulatory network in a
deep-learning model to predict disease from genotype & transcriptome.
Using this to suggest specific pathways & genes, as targets.

Other uses for the resource: Highlighting aging related genes +
consistently comparing the brain to other organs
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Imputed gene regulatory network for
the human brain
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PsychENCODE: Using population-scale functional genomics to
understand neuropsychiatric disease

Construction of an adult brain resource with 1866 individuals,
via data set fusion and uniform processing

Using the changing proportions of cell types
(via single-cell deconvolution) to account for expression variation
across a population & disorders

Large-scale processing defines ~79K PFC
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLS)

Connecting QTLs, enhancer activity relationships & Hi-C into a
brain requlatory network &
using this to link SCZ GWAS SNPs to genes

Embedding the regulatory network in a
deep-learning model to predict disease from genotype & transcriptome.
Using this to suggest specific pathways & genes, as targets.

Other uses for the resource: Highlighting aging related genes +
consistently comparing the brain to other organs




Deep Structured Phenotype Network
(DSPN)

Boltzmann machine
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[Wang et al. (“18) Science] ("Q



LR cRBM DSPN
L3

(output)
DSPN improves brain
n n n (hidden)
disease prediction by
adding deep layers .
(visible or
imputed) § b § L1a/b

LO
(conditioning)

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%
\ J
I
X6.0

Accuracy = chance to correctly predict disease/health

[Wang et al. (‘18) Science]
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LR cRBM DSPN

L3
(output)

DSPN improves brain

(hidden)

disease prediction by
adding deep layers .
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LO
(conditioning)

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full
Schizophrenia 54 .6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%
L J
T
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Accuracy = chance to correctly predict disease/health

[Wang et al. (‘18) Science]

27 ™ Lectures.GersteinLab.org
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Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
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[Wang et al. (‘18) Science]
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Multilevel Network Interpretation

L3

L2b

L1d

 Start with a fully connected trained network

N
N
N
N

Weight ranks:
++

Actual network size:
5024/400/100/1 nodes

« Sparsify network using edges with largest absolute weights (+/-)

[Wang et al. (‘18) Science]
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Multilevel Network Interpretation

AN

2o () OO @ O O @ O Weightrirlks;

Best positive paths
L2a O @ OQ Q Q b, Q (from a and b):

-4 e 1 < -
a—a;— a,— SCZ

1 . 1 .

b—by— b2—1 SCzZ
L1d Actual network size:
@@é@EQQQ et v,
 Start with a fully connected trained network

« Sparsify network using edges with largest absolute weights (+/-)

« Extract ‘best positive paths’ to each prioritized module
(e.g. a-a;-a,-SCZ) by summing weights and multiplying signs .

[Wang et al. (‘18) Science] (';i)




DSPN discovers enriched pathways
and linkages to genetic variation

Cross-disorder MOD/HOG
enrichment ranking

Ranking score

Functional categories

SCzZ BPD

ASD

50

Immune
Metabolic

(*) RNA proc. (=)
100 >200 (>) Synaptic (#)

Spliceosome / RNA splicing
Synaptic vesicle cycle

Antigen proc. and presentation
Vesicle localization
Proteasome

mRNA processing

Chromatin modification
Oxidative phosphorylation
Retrograde endocannabinoid sig.
Chemical synaptic transmission
Peptidyl-lysine modification
Endocytosis

Ubiquitin mediated proteolysis
Anterograde trans-synaptic sig.
mRNA transport
Phosphatidylinositol signaling
Hippo signaling pathway
Staph./ Epstein-Barr virus inf.
Synaptic signaling

Autophagy
Dop./GABA/Glutamatergic synapse
Calcium signaling

Endocrine calcium reabsorption
RNA degradation / transport
Ribosome

Neuron projection morphogenesis
Fc receptor signaling pathway
cGMP-PKG signaling pathway
mTOR signaling pathway
Cytokine-cytokine receptor int.

SCZ

L3

L2

Gap junction

@ BPD, ASD, AGE;

(>)-Synaptic vesicle cycle
>).Glutamatergic synapse
Ex1l, Ex4, Ex6 neurons

Ex6 neurons
Astrocytes

Mineral absorption
Calcium signaling

(~) Complement
cascade

Cell Fractions

Co-expr. mods.
@ L1d

L1

EH37E0947082 |

: Enhancers

Genes

OO :

/

LO
2 SNPs

SNPs | GRINIL

/ / CLU
C4B

C4A
1 sNp //@ Q

BPD

{(>) Synaptic vesicle cycle
(>) Glutamatergic synapse
Ex4 neurons

ASD

(~) Antigen processing

(=) Cytokine cytokine
receptor interaction
Astrocytes, Microglia)

~.

A

8 SNPs v@

HOMER1

NFkB2
13 SNPs
RELA

[Wang et al. (‘“18) Science]

32 = Lectures.GersteinLab.org



PsychENCODE: Using population-scale functional genomics to
understand neuropsychiatric disease

Construction of an adult brain resource with 1866 individuals,
via data set fusion and uniform processing

Using the changing proportions of cell types
(via single-cell deconvolution) to account for expression variation
across a population & disorders

Large-scale processing defines ~79K PFC
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLS)

Connecting QTLs, enhancer activity relationships & Hi-C into a
brain requlatory network &
using this to link SCZ GWAS SNPs to genes

Embedding the regulatory network in a
deep-learning model to predict disease from genotype & transcriptome.
Using this to suggest specific pathways & genes, as targets.

Other uses for the resource: Highlighting aging related genes +
consistently comparing the brain to other organs




Phase 1 PsychENCODE capstone resource:
Layers of distributed information

Material in the 3 capstones:

AC - Wang et al. ("18)
DC - Lietal. ("18)
NC - Gandal et al. ('18)

34
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NRGN has variable expression over age
and is in Synaptic vesicle cycle pathway
is enriched in SCZ, BPD, ASD
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PsychENCODE: Using population-scale functional genomics to
understand neuropsychiatric disease

Construction of an adult brain resource with 1866 individuals,
via data set fusion and uniform processing

Using the changing proportions of cell types
(via single-cell deconvolution) to account for expression variation
across a population & disorders

Large-scale processing defines ~79K PFC
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLS)

Connecting QTLs, enhancer activity relationships & Hi-C into a
brain requlatory network &
using this to link SCZ GWAS SNPs to genes

Embedding the regulatory network in a
deep-learning model to predict disease from genotype & transcriptome.
Using this to suggest specific pathways & genes, as targets.

Other uses for the resource: Highlighting aging related genes +
consistently comparing the brain to other organs
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“Adult Capstone” Team — 1 of 3 capstones
PsychENCODE
Acknowledgment Daifeng Wang, Shuang Liu, Jonathan Warrell, Hyejung

Won, Xu Shi, Fabio Navarro, Declan Clarke, Mengting Gu,

Prashant Emani, Yucheng T. Yang, Min Xu, Michael Gandal, Shaoke Lou, Jing
National Institute  Zhang, Jonathan J. Park, Chengfei Yan, Suhn Kyong Rhie, Kasidet
of Mental Health Manakongtreecheep, Holly Zhou, Aparna Nathan, Mette Peters, Eugenio Mattei,
Dominic Fitzgerald, Tonya Brunetti, Jill Moore, Yan Jiang, Kiran Girdhar, Gabriel
Hoffman, Selim Kalayci, Zeynep Hulya Gumus, Greg Crawford,
*  Geetha Senthil .
. Lora Bingaman PsychENCODE Consortium,

«  David Panchision Panos Roussos, Schahram Akbarian, Andrew E. Jaffe, Kevin White, Zhiping Weng,
- Alexander Arguello Nenad Sestan, Daniel H. Geschwind, James A. Knowles

e« Thomas Lehner

Dedicated to Pamela Sklar Resource.psychencode.org

The PsyChENCODE Consortlum: Allison E Ashley-Koch, Duke University; Gregory E Crawford, Duke University; Melanie E Garrett, Duke University; Lingyun Song, Duke University; Alexias Safi, Duke University; Graham D

Johnson, Duke University; Gregory A Wray, Duke University; Timothy E Reddy, Duke University; Fernando S Goes, Johns Hopkins University; Peter Zandi, Johns Hopkins University; Julien Bryois, Karolinska Institutet; Andrew E Jaffe, Lieber Institute for Brain
Development; Amanda J Price, Lieber Institute for Brain Development; Nikolay A Ivanoy, Lieber Institute for Brain Development; Leonardo Collado-Torres, Lieber Institute for Brain Development; Thomas M Hyde, Lieber Institute for Brain Development; Emily E
Burke, Lieber Institute for Brain Development; Joel E Kleiman, Lieber Institute for Brain Development; Ran Tao, Lieber Institute for Brain Development; Joo Heon Shin, Lieber Institute for Brain Development; Schahram Akbarian, Icahn School of Medicine at
Mount Sinai; Kiran Girdhar, Icahn School of Medicine at Mount Sinai; Yan Jiang, Icahn School of Medicine at Mount Sinai; Marija Kundakovic, Icahn School of Medicine at Mount Sinai; Leanne Brown, Icahn School of Medicine at Mount Sinai; Bibi S Kassim,
Icahn School of Medicine at Mount Sinai; Royce B Park, Icahn School of Medicine at Mount Sinai; Jennifer R Wiseman, Icahn School of Medicine at Mount Sinai; Elizabeth Zharovsky, Icahn School of Medicine at Mount Sinai; Rivka Jacobov, Icahn School of
Medicine at Mount Sinai; Olivia Devillers, Icahn School of Medicine at Mount Sinai; Elie Flatow, Icahn School of Medicine at Mount Sinai; Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National
Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn School of Medicine at Mount Sinai and James J Peters VA Medical Center; Chang-Gyu Hahn, University of Pennsylvania; Alexander W Charney, Mount
Sinai; Stella Dracheva, Mount Sinai; Alexey Kozlenkov, Mount Sinai; Judson Belmont, Icahn School of Medicine at Mount Sinai; Diane DelValle, Icahn School of Medicine at Mount Sinai; Nancy Francoeur, Icahn School of Medicine at Mount Sinai; Evi
Hadjimichael, Icahn School of Medicine at Mount Sinai; Dalila Pinto, Icahn School of Medicine at Mount Sinai; Harm van Bakel, Icahn School of Medicine at Mount Sinai; Panos Roussos, Mount Sinai; John F Fullard, Mount Sinai; Jaroslav Bendl, Mount Sinai;
Mads E Hauberg, Mount Sinai; Lara M Mangravite, Sage Bionetworks; Mette A Peters, Sage Bionetworks; Yooree Chae, Sage Bionetworks; Junmin Peng, St. Jude Children's Hospital; Mingming Niu, St. Jude Children's Hospital; Xusheng Wang, St. Jude
Children's Hospital; Maree J Webster, Stanley Medical Research Institute; Thomas G Beach, Banner Sun Health Research Institute; Chao Chen, Central South University; Yi Jiang, Central South University; Rujia Dai, Central South University; Annie W Shieh,
SUNY Upstate Medical University; Chunyu Liu, SUNY Upstate Medical University; Kay S. Grennan, SUNY Upstate Medical University; Yan Xia, SUNY Upstate Medical University/Central South University; Ramu Vadukapuram, SUNY Upstate Medical
University; Yongjun Wang, Central South University; Dominic Fitzgerald, The University of Chicago; Lijun Cheng, The University of Chicago; Miguel Brown, The University of Chicago; Mimi Brown, The University of Chicago; Tonya Brunetti, The University of
Chicago; Thomas Goodman, The University of Chicago; Majd Alsayed, The University of Chicago; Michael J Gandal, University of California, Los Angeles; Daniel H Geschwind, University of California, Los Angeles; Hyejung Won, University of California, Los
Angeles; Damon Polioudakis, University of California, Los Angeles; Brie Wamsley, University of California, Los Angeles; Jiani Yin, University of California, Los Angeles; Tarik Hadzic, University of California, Los Angeles; Luis De La Torre Ubieta, UCLA; Vivek
Swarup, University of California, Los Angeles; Stephan J Sanders, University of California, San Francisco; Matthew W State, University of California, San Francisco; Donna M Werling, University of California, San Francisco; Joon-Yong An, University of
California, San Francisco; Brooke Sheppard, University of California, San Francisco; A Jeremy Willsey, University of California, San Francisco; Kevin P White, The University of Chicago; Mohana Ray, The University of Chicago; Gina Giase, SUNY Upstate
Medical University; Amira Kefi, University of lllinois at Chicago; Eugenio Mattei, University of Massachusetts Medical School; Michael Purcaro, University of Massachusetts Medical School; Zhiping Weng, University of Massachusetts Medical School; Jill
Moore, University of Massachusetts Medical School; Henry Pratt, University of Massachusetts Medical School; Jack Huey, University of Massachusetts Medical School; Tyler Borrman, University of Massachusetts Medical School; Patrick F Sullivan, University
of North Carolina - Chapel Hill; Paola Giusti-Rodriguez, University of North Carolina - Chapel Hill; Yunjung Kim, University of North Carolina - Chapel Hill; Patrick Sullivan, University of North Carolina - Chapel Hill; Jin Szatkiewicz, University of North Carolina -
Chapel Hill; Suhn Kyong Rhie, University of Southern California; Christoper Armoskus, University of Southern California; Adrian Camarena, University of Southern California; Peggy J Farnham, University of Southern California; Valeria N Spitsyna, University
of Southern California; Heather Witt, University of Southern California; Shannon Schreiner, University of Southern California; Oleg V Evgrafov, SUNY Downstate Medical Center; James A Knowles, SUNY Downstate Medical Center; Mark Gerstein, Yale
University; Shuang Liu, Yale University; Daifeng Wang, Stony Brook University; Fabio C. P. Navarro, Yale University; Jonathan Warrell, Yale University; Declan Clarke, Yale University; Prashant S. Emani, Yale University; Mengting Gu, Yale University; Xu Shi,
Yale University; Min Xu, Yale University; Yucheng T. Yang, Yale University; Robert R. Kitchen, Yale University; Gamze Glirsoy, Yale University; Jing Zhang, Yale University; Becky C Carlyle, Yale University; Angus C Nairn, Yale University; Mingfeng Li, Yale
University; Sirisha Pochareddy, Yale University; Nenad Sestan, Yale University; Mario Skarica, Yale University; Zhen Li, Yale University; Andre M.M. Sousa, Yale University; Gabriel Santpere, Yale University; Jinmyung Choi, Yale University; Ying Zhu, Yale
University; Tianliuyun Gao, Yale University; Daniel J Miller, Yale University; Adriana Cherskov, Yale University; Mo Yang, Yale University; Anahita Amiri, Yale University; Gianfilippo Coppola, Yale University; Jessica Mariani, Yale University; Soraya Scuderi, Yale
University; Anna Szekely, Yale University; Flora M Vaccarino, Yale University; Feinan Wu, Yale University; Sherman Weissman, Yale University; Tanmoy Roychowdhury, Mayo Clinic Rochester; Alexej Abyzov, Mayo Clinic Rochester;.
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2017.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.htmi .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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