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PsychENCODE:

Using 
population-scale 
functional genomics 
to understand neuro-
psychiatric disease 

Mark Gerstein, Yale

Slides freely downloadable from Lectures.GersteinLab.org &
“tweetable” (via @markgerstein). See last slide for more info.
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Single Cell 

The PsychENCODE Consortium
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A core issue addressed by PsychENCODE: 
Using functional genomics to reveal molecular mechanisms 

between genotype and phenotype in brain disorders

Genotype

AGEBPDSCZ

Phenotype

Genes

Modules

pathways, 
circuits

Cell types

…

Regulatory 
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Disease Heritability* Molecular Mechanisms

Schizophrenia 81% (C4A)

Bipolar disorder 70% -

Alzheimer's disease 58 - 79% Apolipoprotein E (APOE), Tau

Hypertension 30% Renin–angiotensin–aldosterone

Heart disease 34-53% Atherosclerosis, VCAM-1

Stroke 32% Reactive oxygen species (ROS), 
Ischemia

Type-2 diabetes 26% Insulin resistance

Breast Cancer 25-56% BRCA, PTEN

Many psychiatric conditions are highly heritable
Schizophrenia: up to 80%

But we don’t understand basic molecular mechanisms underpinning this association 
(in contrast to many other diseases such as cancer & heart disease)

Thus, interested in developing predictive models of psychiatric traits which:
Use observations at intermediate (molecular levels) levels to inform latent structure
Use the predictive features of these “molecular endo phenotypes” to begin to suggest 
actors involved in mechanism
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2018 
PsychENCODE

“Rollout”
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PsychENCODE: Using population-scale functional genomics to 
understand neuropsychiatric disease 

• Construction of an adult brain resource with 1866 individuals, 
via data set fusion and uniform processing

• Using the changing proportions of cell types 
(via single-cell deconvolution) to account for expression variation 
across a population & disorders

• Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLs)

• Connecting QTLs, enhancer activity relationships & Hi-C into a
brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

• Embedding the regulatory network in a 
deep-learning model to predict disease from genotype & transcriptome. 
Using this to suggest specific pathways & genes, as targets.

• Other uses for the resource: Highlighting aging related genes + 
consistently comparing the brain to other organs
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Collecting 
functional 
genomic 
datasets 
for the 

adult brain 

from 
PsychENCODE, 

other large 
consortia & single 

cell studies

1866
Individuals
~3.7K bulk RNA-seq
~32K single-cells  
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Lake et al., 2018 data PEC adult data 
[Li et al. (‘18), Science. Wang et al. (‘18). Science]

Merging & Clustering Single 
Cell Data Sets

Single cell signatures, from:

• ~14K cells 
(Lake et al.,‘16 & ‘18)

• ~400 cells 
(Darmanis et al., PNAS, ‘15)

• ~18K cells (PsychENCODE)
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Single-cell 
deconvolution 
Step 1:

Supervised 
learning to 
estimate cell 
fractions

Individual and cross-population 
reconstruction accuracy via 
deconvolution

88%±4%

[Wang et al. (‘18) Science]
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Different neuronal & glial cell 
fractions across disorders

Excitatory to Inhibitory imbalance at 
neuronal subtype level for ASD*
* Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain 
Behav. 2003

Ex5 In6 Oligo

[Wang et al. (‘18) Science]



PsychENCODE: Using population-scale functional genomics to 
understand neuropsychiatric disease 

• Construction of an adult brain resource with 1866 individuals, 
via data set fusion and uniform processing

• Using the changing proportions of cell types 
(via single-cell deconvolution) to account for expression variation 
across a population & disorders

• Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLs)

• Connecting QTLs, enhancer activity relationships & Hi-C into a
brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

• Embedding the regulatory network in a 
deep-learning model to predict disease from genotype & transcriptome. 
Using this to suggest specific pathways & genes, as targets.

• Other uses for the resource: Highlighting aging related genes + 
consistently comparing the brain to other organs
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Characterize brain specific enhancers

[Wang et al. (‘18) Science]

Developing a Reference Set of ~79K PFC Enhancers 
& Studying Their Population Variation

Consistent with ENCODE, active 
enhancers are identified as open 
chromatin regions enriched in 
H3K27ac and depleted in H3K4me3  
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Characterize brain specific enhancers

[Wang et al. (‘18) Science]

Developing a Reference Set of ~79K PFC Enhancers 
& Studying Their Population Variation
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Gene expression (eQTL) Chromatin (cQTL)

Chromatin variation in the population
Quantitaive Trait Loci (QTLs) associated with variation
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present in more than half of the individuals sur-
veyed. In a comparison of aggregated sets for
these three brain regions, the PFC was more
similar to the TC than the CB (~90% versus 34%
overlap in peaks). This difference is consistent
with previous reports and suggests potentially
different cell-type composition in the CB and the
cortex (33, 34).

We also examined howmany of the enhancers
in the reference brain are active (i.e., have en-
richedH3K27ac) in each of the individuals in our
cohort. As expected, not every reference enhancer
was active in each individual. On average, only
~70% ± 15% (~54,000) of the enhancers in the
reference brain were active in an individual in the
cohort, and a similar fraction of the reference

enhancerswas active inmore than half the cohort
(68%) (Fig. 3B). To estimate the total number of
enhancers in the PFC, we calculated the cumu-
lative number of active regions across the cohort
(fig. S25). This increased for the first 20 individ-
uals sampled but saturated at the 30th. Thus, we
hypothesize that pooling PFC enhancers from
~30 individuals is sufficient to cover nearly all

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 5 of 13
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Fig. 4. QTLs in the adult brain. (A) The frequency of genes with at least
one eQTL (eGenes) is shown across different studies.The number of eGenes
increased as the sample size increased. PsychENCODE eGenes are close
to saturation for protein-coding genes. The estimated replication p1 values
for GTEx and CMC eQTLs versus PsychENCODE are shown (36). (B) The
similarity between PsychENCODE brain dorsolateral PFC (DLPFC) eQTLs
and GTEx eQTLs of other tissues are evaluated by p1 values and SNP-eGene
overlap rates. Both p1 values and SNP-eGene overlap rates are higher for
brain DLPFC than for the other tissues. (C) An example of an H3K27ac
signal across individuals in a representative genomic region, showing largely
congruent identification of regions of open chromatin.The region within the
dashed rectangle represents a cQTL; the signal magnitudes for individuals
with a G/G or G/Tgenotype were lower than those for individuals with a
T/Tgenotype. chr1, chromosome 1; rs, reference SNP. (D) An example of the
mechanism by which an fQTL may affect phenotype.This fQTL overlaps with
an eQTL for FZD9, a gene located in the 7q11.23 region that is deleted in
Williams syndrome.The fQTLmay affect the fraction of Ex3 by regulating FZD9

expression. Only Ex3 constitutes a statistically significant fQTLwith this SNP
(as designated by the asterisk). ref, reference; alt, alternate. (E) The
enrichment of QTLs in different genomic annotations is shown. Pink circles
indicate highly significant enrichment (P < 1 × 10−25 and OR > 2.5). OR,
odds ratio; TFBS,TF binding site; UTR, untranslated region. (F) Numbers
of identified QTL-associated elements (eGenes, enhancers, and cell types) and
QTL SNPs are shown in the bottom left table. Asterisks indicate that, for
cQTLs, we show only the number of top SNPs for each enhancer. Overlaps of
all QTL SNPs are shown in heatmaps (square rows).The linked circles show
the overlap of QTL types.The intersections of other QTLs with eQTLs are
evaluated by using p1 values in the orange bar plot.The greatest intersection
is between cQTLs and eQTLs. An example is displayed on the right: the
intersection of eQTL SNPs (for the MTOR gene) and cQTL SNPs (for the
H3K27ac signal on an enhancer ~50 kbupstreamof the gene). Hi-C interactions
(bottom) indicate that the enhancer interacts with the promoter of MTOR,
suggesting that the cQTLSNPs potentially mediate the expression modulation
manifest by the eQTL SNPs.

RESEARCH | RESEARCH ARTICLE | PSYCHENCODE

on February 22, 2019
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[Wang et al. (‘18) Science]
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Larger brain eQTL sets than previous studies, 
but strong overlap with them

[Wang et al. (‘18) Science]

2,542,908 eQTLs (FDR< 0.05)
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multi-QTLs from overlapping 
different types of QTLs: 

cQTL, fQTL, eQTL & isoQTL

eQTLs for mTOR 
mediated by 

cQTLs

1391 SNPs (multi-QTLs) 
in at least three types 
among eQTLs, isoQTLs, 
cQTLs, fQTLs

eQTLs and cQTLs
significantly 

overlap

eQTL
isoQTL
cQTL
fQTL

[Wang et al. (‘18) Science]
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Brain eQTLs and enhancers enriched with GWAS 
SNPs for brain disorders

Enrichment

Wang, et al., Science, 2018



PsychENCODE: Using population-scale functional genomics to 
understand neuropsychiatric disease 

• Construction of an adult brain resource with 1866 individuals, 
via data set fusion and uniform processing

• Using the changing proportions of cell types 
(via single-cell deconvolution) to account for expression variation 
across a population & disorders

• Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLs)

• Connecting QTLs, enhancer activity relationships & Hi-C into a
brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

• Embedding the regulatory network in a 
deep-learning model to predict disease from genotype & transcriptome. 
Using this to suggest specific pathways & genes, as targets.

• Other uses for the resource: Highlighting aging related genes + 
consistently comparing the brain to other organs
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Hi-C

Enhancers
Topologically Associating 

Domain (TAD)

Gene

Potential Enhancer-Promoter 
(E-P) interaction in TAD

Transcription Factor Binding Sites (TFBSs)

TF
Enhancer
Target gene

TFBS on promoter

TFBS on enhancer

!*= "#$%&'( ) − +! , + " ! , + . ! /0
TF expression (X) to predict target gene expression (Y) 
using Elastic net regression

C*i
Expression activity relationship

QTLs

C*j

C*k

Gene regulatory 
network inference 
from Hi-C, QTLs & 

Activity Correlations

[Wang et al. (‘18) Science]
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Imputed gene regulatory network for 
the human brain
Imputed gene regulatory network linking TFs, enhancers and genes plus 
QTLs

subnetworks targeting single cell marker genes
[Wang et al. (‘18) Science]
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Linking GWAS SNPs 
to disease genes using 
the regulatory network

142

321 
high-confident 

SCZ genesActivity

[Wang et al. (‘18) Science]



PsychENCODE: Using population-scale functional genomics to 
understand neuropsychiatric disease 

• Construction of an adult brain resource with 1866 individuals, 
via data set fusion and uniform processing

• Using the changing proportions of cell types 
(via single-cell deconvolution) to account for expression variation 
across a population & disorders

• Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLs)

• Connecting QTLs, enhancer activity relationships & Hi-C into a
brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

• Embedding the regulatory network in a 
deep-learning model to predict disease from genotype & transcriptome. 
Using this to suggest specific pathways & genes, as targets.

• Other uses for the resource: Highlighting aging related genes + 
consistently comparing the brain to other organs
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Deep Structured Phenotype Network 
(DSPN) 

Boltzmann machine 

y: phenotypes

h: hidden units (e.g., circuits)

x: intermediate phenotypes 
(e.g., genes, enhancers)

z: genotypes (e.g., SNPs)

W: weights 
(e.g., regulatory network)

Variants

LR cRBM cDBM

L0
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units)

AGEBPDSCZ
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…
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Enhancers Genes
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Gene 
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Gene 
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Energy 
model:

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Accuracy = chance to correctly predict disease/health

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

X 6.0

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 2.5

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 3.1

[Wang et al. (‘18) Science]
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Start with a fully connected trained network

Actual network size:
5024/400/100/1 nodes
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Start with a fully connected trained network
• Sparsify network using edges with largest absolute weights (+/-)

Actual network size:
5024/400/100/1 nodes
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Start with a fully connected trained network
• Sparsify network using edges with largest absolute weights (+/-)
• Extract ‘best positive paths’ to each prioritized module                 

(e.g. a-a1-a2-SCZ) by summing weights and multiplying signs

Actual network size:
5024/400/100/1 nodes
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DSPN discovers enriched pathways 
and linkages to genetic variation

[Wang et al. (‘18) Science]

Cross-disorder MOD/HOG 
enrichment ranking

SCZ

BPD ASD



PsychENCODE: Using population-scale functional genomics to 
understand neuropsychiatric disease 

• Construction of an adult brain resource with 1866 individuals, 
via data set fusion and uniform processing

• Using the changing proportions of cell types 
(via single-cell deconvolution) to account for expression variation 
across a population & disorders

• Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLs)

• Connecting QTLs, enhancer activity relationships & Hi-C into a
brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

• Embedding the regulatory network in a 
deep-learning model to predict disease from genotype & transcriptome. 
Using this to suggest specific pathways & genes, as targets.

• Other uses for the resource: Highlighting aging related genes + 
consistently comparing the brain to other organs



Phase 1 PsychENCODE capstone resource: 
Layers of distributed information

Material in the 3 capstones:

AC - Wang et al. ('18)
DC - Li et al. ('18)
NC - Gandal et al. ('18)

34

Resource.psychencode.org
Development.psychencode.org
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Cross tissue 
variation in 

Chromatin & 
Expression

Placing the 
Brain

in context of all other 
Body Tissues

Transcriptome diversity increases in 

the non-coding portion of the brain genome 
while decreases in other tissues
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pr

es
si

on
C

hr
om

at
in

[Wang et al. (‘18) Science]
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NRGN has variable expression over age 
and is in Synaptic vesicle cycle pathway 

is enriched in SCZ, BPD, ASD
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PsychENCODE: Using population-scale functional genomics to 
understand neuropsychiatric disease 

• Construction of an adult brain resource with 1866 individuals, 
via data set fusion and uniform processing

• Using the changing proportions of cell types 
(via single-cell deconvolution) to account for expression variation 
across a population & disorders

• Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLs)

• Connecting QTLs, enhancer activity relationships & Hi-C into a
brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

• Embedding the regulatory network in a 
deep-learning model to predict disease from genotype & transcriptome. 
Using this to suggest specific pathways & genes, as targets.

• Other uses for the resource: Highlighting aging related genes + 
consistently comparing the brain to other organs



PsychENCODE: Using population-scale functional genomics to 
understand neuropsychiatric disease 

• Construction of an adult brain resource with 1866 individuals, 
via data set fusion and uniform processing

• Using the changing proportions of cell types 
(via single-cell deconvolution) to account for expression variation 
across a population & disorders

• Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL resource (~2.5M eQTLs
+ cQTLs & fQTLs)

• Connecting QTLs, enhancer activity relationships & Hi-C into a
brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

• Embedding the regulatory network in a 
deep-learning model to predict disease from genotype & transcriptome. 
Using this to suggest specific pathways & genes, as targets.

• Other uses for the resource: Highlighting aging related genes + 
consistently comparing the brain to other organs
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Dedicated to Pamela Sklar Resource.psychencode.org
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Info about content in this slide pack
• General PERMISSIONS
-This Presentation is copyright Mark Gerstein, 

Yale University, 2017. 
-Please read permissions statement at 

www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). 
- Paper references in the talk were mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 
clipped images in this presentation see http://streams.gerstein.info . 
- In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt


