CBB752b17 Homework Assignment 1

DUE DATE: February 20th (Monday) 2017, 11:59pm

Choose to do either MCDB&MBB or CBB&CS homework, depending on your academic affiliation. No late submissions will be accepted.

MCDB & MBB 752/753

- 1. Multiple sequence alignments (MSA) cannot be efficiently handled using purely dynamic programming. Choose one existing MSA software and describe how it implements MSA. (for example Muscle, clustalW, Kalign, MView, T-coffee...)
- 2. Align the following two sequences using the Smith-Waterman algorithm (local alignment), with the following scores: Match: 2; Mismatch: 0; Gap: -1. In addition to filling out the alignment matrix, indicate the traceback and write out the final alignment.

		A	A	A	A	С	G	С	Т	Т
	0	0	0	0	0	0	0	0	0	0
Τ	0									
Τ	0									
Τ	0									
A	0									
A	0									
Τ	0									
\mathbf{C}	0									
G	0									
\mathbf{C}	0									

- 3. In class and "The Game of Genomes" the difficulty of properly identifying structural variation in a genome was discussed. Explain how the Smith-Waterman and Needleman-Wuncsh algorithms would align a read containing a large deletion relative to the reference genome. How would changing the gap penalty impact the alignment?
- 4. Machine learning approaches are becoming extremely useful in the analysis of genome-scale data, as reviewed in the following paper: Yip, KY, Cheng, C, Gerstein, M (2013). Machine learning and genome annotation: a match meant to be?. Genome Biol., 14, 5:205. Choose one article that describes the application of supervised machine learning to genomics and answer the following:
 - What are the researchers trying to predict/infer?
 - What information in being used for the prediction? What is the logic behind using these data?
 - What preprocessing steps are used to prepare the data for machine learning?
 - What is the model the researchers use, and why did they select their particular method?
 - How do the researchers evaluate their predictions? Were they effective? What biological insight was gained?

CBB & CPSC 752

Scripting must be done from scratch, without the use of any preexisting packages.

The programming task is to implement the Smith-Waterman local alignment algorithm for protein sequences.

Gap penalties: opening gap -2, extension gap = -1

Requirements:

The program should automatically read in the similarity matrix file called "blosum62.txt" and input sequences in "input.txt", where each line is a sequence.

The output should contain a human-readable alignment such as the following:

where | represents amino acid identity and - represents a sequence gap.

For each sequence pair, the output must include the completed scoring matrix (including the sequences themselves) in tab-delimited format (akin to the hand-drawn DP scoring matrix), best-scoring local alignment(s) and the score. (Just to be precise, the completed scoring matrix contains the best score in the alignment up to this point.) These will constitute 90% of your grade, with the remaining 10% coming from your programming style (e.g. clear comments).

Programs that do not compile will get an immediate 0. To receive partial credit, please make sure your program is well-commented.

If you use Python, please edit the code template "hw1.py".

If you use R, please edit the following code block:

```
## Specifying author and email
p <- c(person("First name", "Last name", role = "aut", email = "your email"))

## Define the main function
MyOwn_Smith_Waterman <- function(input = "input.txt", output = "score.txt") {
}

## Run the main function and generate results
MyOwn_Smith_Waterman(input = "input.txt", output = "score.txt")</pre>
```